74 research outputs found
Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers
がん進展制御研究所 Telomerase activation is a critical step for human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. Transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is the major mechanism for cancer-specific activation of telomerase, and a number of factors have been identified to directly or indirectly regulate the hTERT promoter, including cellular transcriptional activators (c-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as the repressors, most of which comprise tumor suppressor gene products, such as p53, WT1, and Menin. Nevertheless, none of them can clearly account for the cancer specificity of hTERT expression. The chromatin structure via the DNA methylation or modulation of nucleosome histones has recently been suggested to be important for regulation of the hTERT promoter. DNA unmethylation or histone methylation around the transcription start site of the hTERT promoter triggers the recruitment of histone acetyltransferase (HAT) activity, allowing hTERT transcription. These facts prompted us to apply these regulatory mechanisms to cancer diagnostics and therapeutics. Telomerase-specific replicative adenovirus (Telomelysin, OBP-301), in which E1A and E1B genes are driven by the hTERT promoter, has been developed as an oncolytic virus that replicates specifically in cancer cells and causes cell death via viral toxicity. Direct administration of Telomelysin was proved to effectively eradicate solid tumors in vivo, without apparent adverse effects. Clinical trials using Telomelysin for cancer patients with progressive stages are currently ongoing. Furthermore, we incorporated green fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401). Administration of TelomeScan into the primary tumor enabled the visualization of cancer cells under the cooled charged-coupled device (CCD) camera, not only in primary tumors but also the metastatic foci. This technology can be applied to intraoperative imaging of metastatic lymphnodes. Thus, we found novel tools for cancer diagnostics and therapeutics by utilizing the hTERT promoter. © 2008 Japanese Cancer Association
Discovery of Genome-Wide DNA Polymorphisms in a Landrace Cultivar of Japonica Rice by Whole-Genome Sequencing
Molecular breeding approaches are of growing importance to crop improvement. However, closely related cultivars generally used for crossing material lack sufficient known DNA polymorphisms due to their genetic relatedness. Next-generation sequencing allows the identification of a massive number of DNA polymorphisms such as single nucleotide polymorphisms (SNPs) and insertions–deletions (InDels) between highly homologous genomes. Using this technology, we performed whole-genome sequencing of a landrace of japonica rice, Omachi, which is used for sake brewing and is an important source for modern cultivars. A total of 229 million reads, each comprising 75 nucleotides of the Omachi genome, was generated with 45-fold coverage and uniquely mapped to 89.7% of the Nipponbare genome, a closely related cultivar. We identified 132,462 SNPs, 16,448 insertions and 19,318 deletions between the Omachi and Nipponbare genomes. An SNP array was designed to validate 731 selected SNPs, resulting in validation rates of 95 and 88% for the Omachi and Nipponbare genomes, respectively. Among the 577 SNPs validated in both genomes, 532 are entirely new SNP markers not previously reported between related rice cultivars. We also validated InDels on a part of chromosome 2 as DNA markers and successfully genotyped five japonica rice cultivars. Our results present the methodology and extensive data on SNPs and InDels available for whole-genome genotyping and marker-assisted breeding. The polymorphism information between Omachi and Nipponbare is available at NGRC_Rice_Omachi (http://www.nodai-genome.org/oryza_sativa_en.html)
Gastric Acid Secretion of Rats with Alterative Autonomic Nervous System
The role of the autonomic nervous system in the generation mechanism of gastric stress ulcers has long been attracting attention. We have been investigating the ulcer formation in the spontaneously hypertensive rat (SHR) thought to have a functionally facilitated sympathetic nervous system and in the MGS rat in which the function of the sympathetic nervous system may be attenuated. In the present study, we studied the state of gastric acid secretion under a pyloric ligation condition in these rat species, using WKY rats as the control. The pylorus was ligated for 4 hrs, and the volume and pH of gastric juice and the volume of gastric acid secreted were measured. Both SHRs and MSG rats showed higher pH values and smaller volume of secreted acid than WKY rats. Ulcer formation in SHRs was milder than in control rats as reported previously, and this was thought to be related to the high pH value and the low gastric acid secretion observed in the present study. Although ulcer formation in MSG rats was more frequent than in control animals, factors such as mucosal blood flow etc. were suggested to be rather responsible because of the high pH value and low acid secretion in this species
Concomitant activation of AKT with extracellular-regulated kinase 1/2 occurs independently of PTEN or PIK3CA mutations in endometrial cancer and may be associated with favorable prognosiss
がん進展制御研究所 Deregulated signaling via the phosphatidylinositol 3-kinase (PI3K) pathway is common in many types of cancer, but its clinicopathological significance in endometrial cancer remains unclear. In the present study, we examined the status of the PI3K signaling pathway, especially in relation to PTEN and PIK3CA status, in endometrioid-type endometrial cancer. The immunohistochemical analysis revealed a high level of phosphorylated (p)-AKT expression, which is a hallmark of activated PI3K signaling, in approximately 60% of endometrial cancers. There was no correlation between p-AKT expression and clinicopathological characteristics, such as International Federation of Gynecology and Obstetrics stage, tumor grade, and myometrial invasion. Unexpectedly, a high level of p-AKT expression occurred independently of the presence of PTEN or PIK3CA mutations. Furthermore, p-AKT expression did not correlate with the expression of potential downstream targets, including p-mTOR and p-FOXO1/3a. In turn, p-AKT expression was strongly associated with extracellular-regulated kinase 1/2 expression (P = 0.0031), which is representative of the activated RAS-MAP kinase pathway. Kaplan-Meier analysis suggested that low p-AKT expression was associated with low rates of relapse-free survival, although the difference was not statistically significant, indicating that AKT activation does not confer worse prognosis. The present study demonstrates the presence of complex signaling pathways that might mask the conventional tumorigenic PTEN-PI3K-AKT-mTOR pathway, and strongly suggests a close association between the extracellular-regulated kinase and PI3K pathways in this tumor type. © 2007 Japanese Cancer Association
Recurrence of Proliferative Glomerulonephritis with Monoclonal Immunoglobulin G Deposits with a Striated Ultrastructure
This is the peer-reviewed but unedited manuscript version of the following article: Nephron 2020;144(suppl 1):43–48 (DOI: 10.1159/000512330)]. The final, published version is available at http://www.karger.com/?doi=10.1159/000512330
Activation of ERK1/2 occurs independently of KRAS or BRAF status in endometrial cancer and is associated with favorable prognosis
がん進展制御研究所The extracellular-regulated kinase (ERK) signaling pathway plays important roles in regulating the malignant potential of cancer cells in vitro. However, the effect of ERK signaling on the prognosis of human tumors is not clearly understood. The present study examined the expression of phosphorylated ERK1/2 (p-ERK1/2) as a hallmark of ERK activation, in relation to KRAS and BRAF mutations, in 63 endometrial cancer specimens with endometrioid-subtype, in order to clarify the prognostic value of p-ERK1/2 expression. Immmunohistochemical analysis revealed that 40 tumors (63%) expressed p-ERK1/2, with varying levels of expression. Total ERK1/2 expression was also evaluated in a subset of tumors; most cases expressed ERK1/2 constitutively but no correlation was observed with p-ERK expression, indicating that p-ERK1/2 staining was not due to ERK overexpression but to hyperactivation of ERK1/2. There was no statistically significant correlation between p-ERK1/2 expression and clinicopathological features, including patient age, International Federation of Gynecology and Obstetrics stage, pathological grade, myometrial invasion and lymph node metastasis. Sequencing analysis indicated that 23% of patients had a mutation in exon 1 of KRAS, whereas none of the patients had a mutation in exons 11 or 15 of BRAF, which are reportedly hot spots for mutation in many tumor types. There was no significant correlation between KRAS or BRAF status and p-ERK1/2 expression. Unexpectedly, patients with low p-ERK1/2 expression had significantly lower relapse-free survival (P = 0.041) and overall survival (P = 0.020). Multivariate Cox regression analysis indicated that p-ERK1/2 expression was an independent prognostic indicator for overall survival (P = 0.047). These findings suggest that ERK activation occurs in a KRAS - and BRAF-independent manner in endometrial cancer, and is associated with favorable prognosis. © 2007 Japanese Cancer Association
THYROID DYSFUNCTION FOLLOWING ALPHA-INTERFERON TREATMENT FOR CHRONIC HEPATITIS C
In order to evaluate the influnces of IFNα on thyroid function, thyroid-stimulating
hormone (TSH), total thyroxine (T4), free T4, tri-iodothyronine (T3), and thyroxine-binding globulin were examined in IFNα-treated 351 patients with chronic hepatitis C before and during therapy. As therapy, either 3 million units (MU) of human lymphoblastoid IFNα or 9MU of recombinant IFNα2a was administrated daily for the initial two weeks followed by three times a week for 22 weeks. There were nine patients
showing thyroid dysfunction during IFNα therapy. They consist of one relapse of Graves' disease, one relapse of Hashimoto thyroiditis, one development of apparent thyroid insufficiency from subclinical hypothyroidism, five cases with transient hyperthyroidism and one case with transient hypothyroidism. T4 and T3 levels in most patients who transiently developed thyroid dysfunction were normalized spontaneously after the discontinuation of IFNα. Thyroid-related autoantibodies were positive in 4 patients before IFNα therapy and newly developed in one patient during therapy. Attention should be paid first to the
previous histories of autoimmune thyroid diseases and the existence of thyroid-related
autoantibodies for the prediction of development of thyroid dysfunction during IFNα therapy. In addition, serial examinations of TSH, T3 and T4 should be also necessary for early detection of transient thyroid dysfunction during IFNα therapy
地震発生帯における深部掘削孔を用いた長期計測
Large earthquakes occur frequently in subduction zones. Most earthquakes are generated in the seismogenic zone, a fairly limited area confined to the shallower regions of the subduction plate boundary. To understand the processes of earthquake generation, it is essential to monitor the physical and mechanical properties of the seismogenic zone over long periods. At present, there are no deep borehole observations of the seismogenic zone more than 3km below seafloor, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in 2003, plans to drill boreholes beneath the ocean floor using a multiple-drilling platform operation. The IODP riser-quipped drilling ship (Chikyu) enables the emplacement of boreholes up to 0km beneath the ocean floor, and will provide opportunities to conduct long-term deep borehole observations in the seismogenic zone. Long-term borehole observations in the seismogenic zone are expected to require the development of advanced sampling, monitoring, and recording technology. Here, we discuss the scientific objectives, engineering and technical challenges, and experimental design for a deep borehole, long-term deepborehole monitoring system aimed at understanding the processes of earthquake generation in the seismogenic zone of subduction plate boundaries. We focus specifically on the relationships between environmental conditions in the deep subsurface, details of monitoring and recording, and design and implementation of scientific tools and programs
- …