56 research outputs found

    Morphology and performance in pentacene

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 57-60).by Ioannis Kymissis.M.Eng

    Movers and Shakers: Kinetic Energy Harvesting for the Internet of Things

    Full text link
    Numerous energy harvesting wireless devices that will serve as building blocks for the Internet of Things (IoT) are currently under development. However, there is still only limited understanding of the properties of various energy sources and their impact on energy harvesting adaptive algorithms. Hence, we focus on characterizing the kinetic (motion) energy that can be harvested by a wireless node with an IoT form factor and on developing energy allocation algorithms for such nodes. In this paper, we describe methods for estimating harvested energy from acceleration traces. To characterize the energy availability associated with specific human activities (e.g., relaxing, walking, cycling), we analyze a motion dataset with over 40 participants. Based on acceleration measurements that we collected for over 200 hours, we study energy generation processes associated with day-long human routines. We also briefly summarize our experiments with moving objects. We develop energy allocation algorithms that take into account practical IoT node design considerations, and evaluate the algorithms using the collected measurements. Our observations provide insights into the design of motion energy harvesters, IoT nodes, and energy harvesting adaptive algorithms.Comment: 15 pages, 11 figure

    Project-based Learning within a Large-Scale Interdisciplinary Research Effort

    Full text link
    The modern engineering landscape increasingly requires a range of skills to successfully integrate complex systems. Project-based learning is used to help students build professional skills. However, it is typically applied to small teams and small efforts. This paper describes an experience in engaging a large number of students in research projects within a multi-year interdisciplinary research effort. The projects expose the students to various disciplines in Computer Science (embedded systems, algorithm design, networking), Electrical Engineering (circuit design, wireless communications, hardware prototyping), and Applied Physics (thin-film battery design, solar cell fabrication). While a student project is usually focused on one discipline area, it requires interaction with at least two other areas. Over 5 years, 180 semester-long projects have been completed. The students were a diverse group of high school, undergraduate, and M.S. Computer Science, Computer Engineering, and Electrical Engineering students. Some of the approaches that were taken to facilitate student learning are real-world system development constraints, regular cross-group meetings, and extensive involvement of Ph.D. students in student mentorship and knowledge transfer. To assess the approaches, a survey was conducted among the participating students. The results demonstrate the effectiveness of the approaches. For example, 70% of the students surveyed indicated that working on their research project improved their ability to function on multidisciplinary teams more than coursework, internships, or any other activity

    Wearable toe band system for monitoring of peripheral artery disease

    Get PDF
    Approximately 8 to 12 million people in the United States suffer from peripheral artery disease (PAD). PAD causes narrowed arteries and reduces blood flow to the lower extremities. People with PAD begin to experience discomfort and pain while walking. Untreated PAD can lead to ulcers, gangrene, and amputation. Before experiencing those severe conditions, detection of narrowing blood vessel enables early diagnosis and treatment. Therefore, accurate and timely diagnosis is necessary. Please click Additional Files below to see the full abstract

    A Lithographic Process for Integrated Organic Field-Effect Transistors

    Get PDF
    Abstract-This paper reports a photolithographic process for fabricating organic field-effect transistors which provides two layers of metal with arbitrary via placement, and optionally allows for subtractive lithographic patterning of the transistor active layer. The demonstrated pentacene transistors have a field-effect mobility of 0.1 0.05 cm 2 /(V s). Parylene-C is used both as the gate dielectric and an encapsulation layer which allows for subtractive lithographic patterning. Also demonstrated is a PMOS inverter without level shifting circuitry and level-restoring High and Low . This work demonstrates a high definition, multilayer, integrated photolithographic process which creates organic field effect transistors suitable for use in integrated circuit applications such as a display backplanes
    • ā€¦
    corecore