16 research outputs found

    Proper motions, membership, and photometry of open clusters near Eta Carinae

    Get PDF
    Proper motions and photographic photometry have been derived for nearly 600 stars with 7.5 < V< 15.5 in the region of the very young open clusters Tr 14, Tr 16, and Cr 232 based on 26 plates dating from 1893 to 1990. Cluster membership probabilities have been derived from the proper motions and color-magnitude diagrams of probable members of each cluster are presented. In contrast to a few of the previous studies we find all three clusters to lie at the same distance

    Orbits of Globular Clusters in the Outer Galaxy: NGC 7006

    Get PDF
    We present a proper motion study of the distant globular cluster NGC 7006 based on the measurement of 25 photographic plates spanning a 40-year interval. The absolute proper motion determined with respect to extragalactic objects is (-0.96, -1.14) +- (0.35, 0.40) mas/yr. The total space velocity of NGC 7006 in a Galactocentric rest frame is 279 km/s, placing the cluster on one of the most energetic orbits (Ra =102 kpc) known to date for clusters within 40-kpc from the Galactic center. We compare the orbits of four clusters that have apocentric radii larger than 80 kpc (NGC 5466, NGC 6934, NGC 7006 and Pal 13) with those of Galactic satellites with well-measured proper motions. These clusters have orbits that are highly eccentric and of various inclinations with respect to the Galactic plane. In contrast, the orbits of the Galactic satellites are of low to moderate eccentricity and highly inclined. Based on orbit types, chemical abundances and cluster parameters, we discuss the properties of the hypothetical host systems of the remote globular clusters in the Searle-Zinn paradigm. It is apparent that clusters such as NGC 5466, NGC 6934 and NGC 7006 formed in systems that more likely resemble the Fornax dSph, rather than the Sagittarius dSph. We also discuss plausible causes for the difference found so far between the orbit type of outer halo clusters and that of Galactic satellites and for the tentative, yet suggestive phase-space scatter found among outer halo clusters.Comment: 27 pages, 5 figures, to be published in the Astronomical Journa

    Kinematic study of the disrupting globular cluster Palomar 5 using VLT spectra

    Full text link
    Wide-field photometric data from the Sloan Digital Sky Survey have recently revealed that the Galactic globular cluster Palomar 5 is in the process of being tidally disrupted (Odenkirchen et al. 2001). Here we investigate the kinematics of this sparse remote star cluster using high resolution spectra from the Very Large Telescope (VLT). Twenty candidate cluster giants located within 6 arcmin of the cluster center have been observed with the UV-Visual Echelle Spectrograph (UVES) on VLT-UT2. The spectra provide radial velocities with a typical accuracy of 0.15 km/s. We find that the sample contains 17 certain cluster members with very coherent kinematics, two unrelated field dwarfs, and one giant with a deviant velocity, which is most likely a cluster binary showing fast orbital motion. From the confirmed members we determine the heliocentric velocity of the cluster as -58.7 +- 0.2 km/s. The total line-of-sight velocity dispersion of the cluster stars is 1.1 +- 0.2 km/s (all members) or 0.9 +- 0.2 km/s (stars on the red giant branch only). This is the lowest velocity dispersion that has so far been measured for a stellar system classified as a globular cluster. The shape of the velocity distribution suggests that there is a significant contribution from orbital motions of binaries and that the dynamical part of the velocity dispersion is therefore still substantially smaller than the total dispersion. ... (abridged)Comment: 29 pages including 10 figures, accepted for publication in the Astronomical Journa

    The Absolute Proper Motion of Palomar 12: A Case for Tidal Capture from the Sagittarius Dwarf Spheroidal Galaxy

    Full text link
    We have measured the absolute proper motion of the young globular cluster Pal 12 with respect to background galaxies, using plate material spanning a 40-year time baseline, and measuring stars down to a magnitude V~22. The measured absolute proper motion has an uncertainty of 0.3 mas/yr in each coordinate. Pal 12's young age for a globular cluster led to the hypothesis that the cluster originated in the Large Magellanic Cloud (LMC) and was later captured by the Milky Way (Lin and Richer 1992). Here we investigate this hypothesis using the complete kinematical data. We present the orbital characteristics of Pal 12 and compare them with those of the LMC and Sagittarius dwarf galaxy (Sgr). The present kinematical data suggest that, from the two parent candidates for Pal 12, Sgr presents a more plausible case for the host galaxy than the LMC. We explore this scenario in the context of the uncertainties in the orbits and using two different analyses: the direct comparison of the orbits of Pal 12 and Sgr as a function of time, and the analytical model of Sgr's tidal disruption developed by Johnson (1998). We find that, within the present uncertainties of the observables, this scenario is viable in both methods. Moreover, both methods place this event at the same point in time. Our best estimate of the time of Pal 12's tidal capture from Sgr is ~ 1.7 Gyr ago.Comment: 37 pages, 5 tables, 5 figures, accepted for publication in AJ, Oct. 200

    Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowded Field Photometry and Cluster Fiducial Sequences in ugriz

    Full text link
    We present photometry for globular and open cluster stars observed with the Sloan Digital Sky Survey (SDSS). In order to exploit over 100 million stellar objects with r < 22.5 mag observed by SDSS, we need to understand the characteristics of stars in the SDSS ugriz filters. While star clusters provide important calibration samples for stellar colors, the regions close to globular clusters, where the fraction of field stars is smallest, are too crowded for the standard SDSS photometric pipeline to process. To complement the SDSS imaging survey, we reduce the SDSS imaging data for crowded cluster fields using the DAOPHOT/ALLFRAME suite of programs and present photometry for 17 globular clusters and 3 open clusters in a SDSS value-added catalog. Our photometry and cluster fiducial sequences are on the native SDSS 2.5-meter ugriz photometric system, and the fiducial sequences can be directly applied to the SDSS photometry without relying upon any transformations. Model photometry for red giant branch and main-sequence stars obtained by Girardi et al. cannot be matched simultaneously to fiducial sequences; their colors differ by ~0.02-0.05 mag. Good agreement (< ~0.02 mag in colors) is found with Clem et al. empirical fiducial sequences in u'g'r'i'z' when using the transformation equations in Tucker et al.Comment: 30 pages, 25 figures. Accepted for publication in ApJS. Version with high resolution figures available at http://www.astronomy.ohio-state.edu/~deokkeun/AnJohnson.pd

    The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    Full text link
    We validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, sigma([Fe/H]) = 0.13 dex for stars in the range of 4500 K < Teff < 7500 K and 2.0 < log g < 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 < [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; we find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by about 0.3 dex.Comment: 56 pages, 8 Tables, 15 figures, submitted to the Astronomical Journa
    corecore