9 research outputs found

    Web Applet For Predicting Structure And Thermodynamics Of Complex Fluids

    Get PDF
    Based on a recently introduced analytical strategy [Hollingshead et al., J. Chem. Phys. 139, 161102 (2013)], we present a web applet that can quickly and semi-quantitatively estimate the equilibrium radial distribution function and related thermodynamic properties of a fluid from knowledge of its pair interaction. We describe the applet's features and present two (of many possible) examples of how it can be used to illustrate concepts of interest for introductory statistical mechanics courses: the transition from ideal gas-like behavior to correlated-liquid behavior with increasing density, and the tradeoff between dominant length scales with changing temperature in a system with ramp-shaped repulsions. The latter type of interaction qualitatively captures distinctive thermodynamic properties of liquid water, because its energetic bias toward locally open structures mimics that of water's hydrogen-bond network. (C) 2015 American Association of Physics Teachers.Chemical Engineerin

    Predicting the structure of fluids with piecewise constant interactions: Comparing the accuracy of five efficient integral equation theories

    No full text
    We use molecular dynamics simulations to test integral equation theory predictions for the structure of fluids of spherical particles with eight different piecewise-constant pair-interaction forms comprising a hard core and a combination of two shoulders and/or wells. Since model pair potentials like these are of interest for discretized or coarse-grained representations of effective interactions in complex fluids (e.g., for computationally intensive inverse optimization problems), we focus here on assessing how accurately their properties can be predicted by analytical or simple numerical closures including Percus-Yevick, hypernetted-chain, and reference hypernetted-chain closures and first-order mean spherical and modified first-order mean spherical approximations. To make quantitative comparisons between the predicted and simulated radial distribution functions, we introduce a cumulative structural error metric. For equilibrium fluid state points of these models, we find that the reference hypernetted-chain closure is the most accurate of the tested approximations as characterized by this metric or related thermodynamic quantities.Welch Foundation F-1696National Science Foundation CBET-1403768Chemical Engineerin

    Impact of Natural Products on Developing New Anti-Cancer Agents

    No full text
    corecore