99 research outputs found
Functionalised peptide hydrogel for the delivery of cardiac progenitor cells.
Heart failure (HF) remains one of the leading causes of death worldwide; most commonly developing after myocardial infarction (MI). Since adult cardiomyocytes characteristically do not proliferate, cells lost during MI are not replaced. As a result, the heart has a limited regenerative capacity. There is, therefore, a need to develop novel cell-based therapies to promote the regeneration of the heart after MI. The delivery and retention of cells at the injury site remains a significant challenge. In this context, we explored the potential of using an injectable, RGDSP-functionalised self-assembling peptide - FEFEFKFK - hydrogel as scaffold for the delivery and retention of rat cardiac progenitor cells (CPCs) into the heart. Our results show that culturing CPCs in vitro within the hydrogel for one-week promoted their spontaneous differentiation towards adult cardiac phenotypes. Injection of the hydrogel on its own, or loaded with CPCs, into the rat after injury resulted in a significant reduction in myocardial damage and left ventricular dilation
Family-based pediatric weight management interventions in US primary care settings targeting children ages 6-12 years old: A systematic review guided by the RE-AIM framework.
Obesity is a pandemic that disproportionately affects children from vulnerable populations in the USA. Current treatment approaches in primary care settings in the USA have been reported to be insufficient at managing pediatric obesity, primarily due to implementation challenges for healthcare systems and barriers for families. While the literature has examined the efficacy of pediatric obesity interventions focused on internal validity, it lacks sufficient reporting and analysis of external validity necessary for successful translation to primary care settings. We conducted a systematic review of the primary-care-setting literature from January 2007 to March 2020 on family-based pediatric weight management interventions in both English and/or Spanish for children ages 6-12 years in the USA using the Reach, Efficacy/Effectiveness, Adoption, Implementation, Maintenance (RE-AIM) framework. A literature search, using PRISMA guidelines, was conducted in January 2022 using the following electronic databases: Medline Ovid, Embase, and Cochrane Library. 22 270 records were screened, and 376 articles were reviewed in full. 184 studies were included. The most commonly reported dimensions of the RE-AIM framework were Reach (65%), Efficacy/Effectiveness (64%), and Adoption (64%), while Implementation (47%) and Maintenance (42%) were less often reported. The prevalence of reporting RE-AIM construct indicators ranged greatly, from 1% to 100%. This systematic review underscores the need for more focus on external validity to guide the development, implementation, and dissemination of future pediatric obesity interventions based in primary care settings. It also suggests conducting additional research on sustainable financing for pediatric obesity interventions
COVID-19 vaccination produces exercise-responsive SARS-CoV-2-specific T-cells regardless of infection history
Purpose: The mobilization and redistribution of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) specific T-cells and neutralizing antibodies during exercise is purported to increase immune surveillance and protect against severe coronavirus disease 2019 (COVID-19). We sought to determine if COVID-19 vaccination would elicit exercise-responsive SARS-CoV-2 T-cells and transiently alter neutralizing
antibody titers. Methods: 18 healthy participants completed a 20 min bout of graded cycling exercise before and/or after receiving a COVID-19 vaccine. All major leukocyte subtypes were enumerated before, during, and after exercise by flow cytometry, and immune responses to SARS CoV-2 were determined using whole blood peptide stimulation assays, T-cell receptor (TCR) sequencing, and SARS-CoV-2 neutralizing antibody
serology. Results: COVID-19 vaccination had no effect on the mobilization or egress of major leukocyte subsets in response to intensity-controlled graded exercise. However, noninfected
participants had a significantly reduced mobilization of CD4+ and CD8+ naive T-cells, as well as CD4+ central memory T-cells, after vaccination (synthetic immunity group); this was not seen after vaccination in those with prior SARS CoV-2 infection (hybrid immunity group). Acute exercise after vaccination robustly mobilized SARSCoV-2 specific T-cells to blood in an intensity-dependent manner. Both groups mobilized T-cells that reacted to spike protein; however, only the hybrid immunity group
mobilized T-cells that reacted to membrane and nucleocapsid antigens. Neutralizing antibodies increased significantly during exercise only in the hybrid immunity group. Conclusion: These data indicate that acute exercise mobilizes SARS CoV-2-specific Tcells that recognize spike protein and increases the redistribution of neutralizing antibodies in individuals with hybrid immunity
Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids
Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation o
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress.
A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells
Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution—pronase—was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed
- …