7,985 research outputs found
Speed in Information Processing with a Computer Driven Visual Display in a Real-time Digital Simulation
Information transfer between the operator and computer-generated display systems is an area where the human factors engineer discovers little useful design data relating human performance to system effectiveness. This study utilized a computer-driven, cathode-ray-tube graphic display to quantify human response speed in a sequential information processing task. The performance criteria was response time to sixteen cell elements of a square matrix display. A stimulus signal instruction specified selected cell locations by both row and column identification. An equal probable number code, from one to four, was assigned at random to the sixteen cells of the matrix and correspondingly required one of four, matched keyed-response alternatives. The display format corresponded to a sequence of diagnostic system maintenance events, that enable the operator to verify prime system status, engage backup redundancy for failed subsystem components, and exercise alternate decision-making judgements. The experimental task bypassed the skilled decision-making element and computer processing time, in order to determine a lower bound on the basic response speed for given stimulus/response hardware arrangement
Recombination Ghosts in Littrow Configuration: Implications for Spectrographs Using Volume Phase Holographic Gratings
We report the discovery of optical ghosts generated when using Volume Phase
Holographic (VPH) gratings in spectrographs employing the Littrow
configuration. The ghost is caused by light reflected off the detector surface,
recollimated by the camera, recombined by, and reflected from, the grating and
reimaged by the camera onto the detector. This recombination can occur in two
different ways. We observe this ghost in two spectrographs being developed by
the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the
Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m
telescope. The typical ratio of the brightness of the ghost relative to the
integrated flux of the spectrum is of order 10^-4, implying a recombination
efficiency of the VPH gratings of order 10^-3 or higher, consistent with the
output of rigorous coupled wave analysis. Any spectrograph employing VPH
gratings, including grisms, in Littrow configuration will suffer from this
ghost, though the general effect is not intrinsic to VPH gratings themselves
and has been observed in systems with conventional gratings in non-Littrow
configurations. We explain the geometric configurations that can result in the
ghost as well as a more general prescription for predicting its position and
brightness on the detector. We make recommendations for mitigating the ghost
effects for spectrographs and gratings currently built. We further suggest
design modifications for future VPH gratings to eliminate the problem entirely,
including tilted fringes and/or prismatic substrates. We discuss the resultant
implications on the spectrograph performance metrics.Comment: 13 pages, 8 figures, emulateapj style, accepted for publication in
PAS
‘Hopeful Adaptation’ in Health Geographies: seeking health and wellbeing in times of adversity
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordLiving with adversity can create wide-ranging challenges for people's health and wellbeing. This adversity may arise through personal embodied difference (e.g. acquiring a brain injury or losing mobility in older age) as well as wider structural relations that shape a person's capacity to adapt. A number of dichotomies have dominated our understanding of how people engage with health and wellbeing practices in their lives, from classifying behaviours as harmful/health-enabling, to understanding the self as being defined before/after illness. This paper critically interrogates a number of these dichotomies and proposes the concept of ‘hopeful adaptation’ to understand the myriad, often non-linear ways that people seek and find health and wellbeing in spite of adversity. We highlight the transformative potential in these adaptive practices, rather than solely focusing on how people persist and absorb adversity. The paper outlines an agenda for a health geography of hopeful adaptation, introducing a collection of papers that examine varied forms of adaptation in people's everyday struggles to find health and wellbeing whilst living with and challenging adversity
Recommended from our members
Why are “What” and “Where” Processed by Separate Cortical Visual Systems? A Computational Investigation
In the primate visual system, the identification of objects and the processing of spatial information are accomplished by different cortical pathways. The computational properties of this “two-systems” design were explored by constructing simplifying connectionist models. The models were designed to simultaneously classify and locate shapes that could appear in multiple positions in a matrix, and the ease of forming representations of the two kinds of information was measured. Some networks were designed so that all hidden nodes projected to all output nodes, whereas others had the hidden nodes split into two groups, with some projecting to the output nodes that registered shape identity and the remainder projecting to the output nodes that registered location. The simulations revealed that splitting processing into separate streams for identifying and locating a shape led to better performance only under some circumstances. Provided that enough computational resources were available in both streams, split networks were able to develop more efficient internal representations, as revealed by detailed analyses of the patterns of weights between connections.Psycholog
Opioids depress cortical centers responsible for the volitional control of respiration
Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem
Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels
Carbon monoxide is a simple molecule present in many astrophysical
environments, and collisional excitation rate coefficients due to the dominant
collision partners are necessary to accurately predict spectral line
intensities and extract astrophysical parameters. We report new quantum
scattering calculations for rotational deexcitation transitions of CO induced
by H using the three-dimensional potential energy surface~(PES) of Song et al.
(2015). State-to-state cross sections for collision energies from 10 to
15,000~cm and rate coefficients for temperatures ranging from 1 to
3000~K are obtained for CO(, ) deexcitation from to all lower
levels, where is the rotational quantum number. Close-coupling and
coupled-states calculations were performed in full-dimension for =1-5, 10,
15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate
rate coefficients for all other intermediate rotational states. The current
rate coefficients are compared with previous scattering results using earlier
PESs. Astrophysical applications of the current results are briefly discussed.Comment: 8 figures, 1 tabl
Real-time digital-computer-hardware simulation of a spacecraft with control-moment-gyroscope stabilization
Computer simulation of Apollo Telescope Mount to evaluate performance of control moment gyroscope system used for stabilizatio
- …