2 research outputs found

    Aerial Imaging-Based Fuel Information Acquisition for Wildfire Research in Northeastern South Korea

    No full text
    Tree detection and fuel amount and distribution estimation are crucial for the investigation and risk assessment of wildfires. The demand for risk assessment is increasing due to the escalating severity of wildfires. A quick and cost-effective method is required to mitigate foreseeable disasters. In this study, a method for tree detection and fuel amount and distribution prediction using aerial images was proposed for a low-cost and efficient acquisition of fuel information. Three-dimensional (3D) fuel information (height) from light detection and ranging (LiDAR) was matched to two-dimensional (2D) fuel information (crown width) from aerial photographs to establish a statistical prediction model in northeastern South Korea. Quantile regression for 0.05, 0.5, and 0.95 quantiles was performed. Subsequently, an allometric tree model was used to predict the diameter at the breast height. The performance of the prediction model was validated using physically measured data by laser distance meter triangulation and direct measurement from a field survey. The predicted quantile, 0.5, was adequately matched to the measured quantile, 0.5, and most of the measured values lied within the predicted quantiles, 0.05 and 0.95. Therefore, in the developed prediction model, only 2D images were required to predict a few of the 3D fuel details. The proposed method can significantly reduce the cost and duration of data acquisition for the investigation and risk assessment of wildfires

    A Novel Ethyl Formate Fumigation Strategy for Managing Yellow Tea Thrips (<i>Scirtothrips dorsalis</i>) in Greenhouse Cultivated Mangoes and Post-Harvest Fruits

    No full text
    The effects of climate change and shifting consumer preferences for tropical/subtropical mango fruits have accelerated their greenhouse cultivation in South Korea, which has consequently exacerbated the risk of unexpected or exotic insect pest outbreaks. This study used the pest risk analysis (PRA) of greenhouse-cultivated mangoes provided by the Animal & Plant Quarantine Agency in Korea to evaluate the potential of ethyl formate (EF) fumigation as a new pest management strategy against the yellow tea thrips (Scirtothrips dorsalis), which is considered a surrogate pest in the thrips group according to the PRA. The efficacy and phytotoxicity of EF were evaluated in greenhouse-cultivated mango tree (Irwin variety) and post-harvest mango fruit scenarios. EF efficacy ranged from 6.25 to 6.89 g∙h/m³ for lethal concentration time (LCt)50 and from 17.10 to 18.18 g∙h/m³ for LCt99, indicating similar efficacy across both scenarios. Application of 10 g/m³ EF for 4 h at 23 °C could effectively control S. dorsalis (100% mortality) without causing phytotoxic damage to the greenhouse-cultivated mango trees, while post-harvest mango fruit fumigation with 15 g/m³ EF for 4 h at 10 °C showed potential for complete disinfestation of S. dorsalis without compromising fruit quality
    corecore