29 research outputs found

    Near-Infrared Photometric Study of the Old Open Cluster Trumpler 5

    Full text link
    We present JHK near-infrared photometric study for the old open cluster (OC) Trumpler 5 (Tr 5), based on the 2MASS data. From the color-magnitude diagrams of Tr 5, we have located the position of the red giant clump (RGC) stars, and used the mean magnitude of the RGC stars in K-band to estimate the distance to Tr 5, d = 3.1 +/- 0.1 kpc ((m-M)_0 = 12.46 +/- 0.04). From fitting the theoretical isochrones of Padova group, we have estimated the reddening, metallicity, and age : E(B-V) = 0.64 +/- 0.05, [Fe/H] = -0.4 +/- 0.1 dex, and t =2.8 +/- 0.2 Gyr (log t=9.45 +/- 0.04), respectively. These parameters generally agree well with those obtained from the previous studies on Tr 5 and confirms that this cluster is an old OC with metallicity being metal-poorer than solar abundance, located in the anti-Galactic center region.Comment: JKAS (J. of the Korean Astron. Soc.) in press (2009 Dec issue), page numbers will be change

    UBVI CCD Photometry of the Old Open Cluster NGC 1193

    Full text link
    We present UBVI photometry of the old open cluster NGC 1193. Color-magnitude diagrams (CMDs) of this cluster show a well defined main sequence and a sparse red giant branch. For the inner region of r<50 arcsec, three blue straggler candidates are newly found in addition to the objects Kaluzny (1988) already found. The color-color diagrams show that the reddening value toward NGC 1193 is E(B-V) =0.19 +/- 0.04. From the ultraviolet excess measurement, we derived the metallicity to be [Fe/H]=-0.45 +/- 0.12. A distance modulus of (m-M)_0 =13.3 +/- 0.15 is obtained from zero age main sequence fitting with the empirically calibrated Hyades isochrone of Pinsonneault et al. (2004). CMD comparison with the Padova isochrones by Bertelli et al. (1994) gives an age of log t =9.7 +/- 0.1.Comment: JKAS (J. of the Korean Astron. Soc.) in press (Dec 2008 issue

    Near-Infrared Photometry of the Star Clusters in the Dwarf Irregular Galaxy IC 5152

    Get PDF
    We present JHK-band near-infrared photometry of star clusters in the dwarf irregular galaxy IC 5152. After excluding possible foreground stars, a number of candidate star clusters are identified in the near-infrared images of IC 5152, which include young populations. Especially, five young star clusters are identified in the (J-H, H-K) two color diagram and the total extinction values toward these clusters are estimated to be A_V =2 - 6 from the comparison with the theoretical values given by the Leitherer et al. (1999)'s theoretical star cluster model.Comment: Accepted by the Journal of the Korean Astronomical Society, 2006 December issue (Vol. 39, No. 4

    Distance and Reddening of the Isolated Dwarf Irregular Galaxy NGC 1156

    Full text link
    We present a photometric estimation of the distance and reddening values to the dwarf irregular galaxy NGC 1156, which is one of the best targets to study the isolated dwarf galaxies in the nearby universe. We have used the imaging data sets of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) High Resolution Channel (HRC) of the central region of NGC 1156 (26" X 29") available in the HST archive for this study. From the (U-B, B-V) color-color diagram, we first estimate the total (foreground + internal) reddening toward NGC 1156 of E(B-V) =0.35 +/- 0.05 mag, whereas only the foreground reddening was previously known to be E(B-V)=0.16 mag (Burstein & Heiles) or 0.24 mag (Schlegel, Finkbeiner, & Davis). Based on the brightest stars method, selecting the three brightest blue supergiant (BSG) stars with mean B magnitude of = 21.94 mag and the three brightest red supergiant (RSG) stars with mean V magnitude of = 22.76 mag, we derive the distance modulus to NGC 1156 to be (m-M)_{0,BSG} = 29.55 mag and (m-M)_{0,RSG} = 29.16 mag. By using weights of 1 and 1.5 for the distance moduli from using the BSGs and the RSGs, respectively, we finally obtain the weighted mean distance modulus to NGC 1156 (m-M)_0 = 29.39 +/- 0.20 mag (d = 7.6 +/- 0.7 Mpc), which is in very good agreement with the previous estimates. Combining the photometry data of this study with those of Karachentsev et al. gives smaller distance to NGC 1156, which is discussed together with the limits of the data.Comment: 18 pages, 8 figures, Accepted by PASJ (2012 Apr issue
    corecore