216 research outputs found
Specific Heat of the Dilute Ising Magnet LiHoYF
We present specific heat data on three samples of the dilute Ising magnet
\HoYLF with , 0.045 and 0.080. Previous measurements of the ac
susceptibility of an sample showed the Ho moments to remain
dynamic down to very low temperatures and the specific heat was found to have
unusually sharp features. In contrast, our measurements do not exhibit these
sharp features in the specific heat and instead show a broad feature, for all
three samples studied, which is qualitatively consistent with a spin glass
state. Integrating , however, reveals an increase in residual entropy with
lower Ho concentration, consistent with recent Monte Carlo simulations showing
a lack of spin glass transition for low x.Comment: 10 pages, 3 figurs, accepted for publication in Phys. Rev. Let
Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements
We have measured the low-temperature specific heat of the geometrically
frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic
field. The specific heat is found to drop exponentially below approximately 350
mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy
resulting from single ion effects and long-range dipolar interactions. The data
are well fitted by linear spin-wave theory, ruling out unconventional low
energy magnetic excitations in this system, and allowing a determination of the
pertinent exchange interactions in this material
Juxtaposition of Spin Freezing and Long Range Order in a Series of Geometrically Frustrated Antiferromagnetic Gadolinium Garnets
Specific heat measurements in zero magnetic field are presented on a
homologous series of geometrically frustrated, antiferromagnetic, Heisenberg
garnet systems. Measurements of Gd3Ga5O12, grown with isotopically pure Gd,
agree well with previous results on samples with naturally abundant Gd, showing
no ordering features. In contrast, samples of Gd3Te2Li3O12 and Gd3Al5O12 are
found to exhibit clear ordering transitions at 243 mK and 175 mK respectively.
The effects of low level disorder are studied through dilution of Gd3+ with
non-magnetic Y3+ in Gd3Te2Li3O12. A thorough structural characterization, using
X-ray diffraction, is performed on all of the samples studied. We discuss
possible explanations for such diverse behavior in very similar systems.Comment: Accepted for publication in Physical Review
Field induced magnetic order in the frustrated magnet Gadolinium Gallium Garnet
Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long
range order is found down to 25 mK despite \Theta_CW \approx 2 K. However, long
range order is induced by an applied field of around 1 T. Motivated by recent
theoretical developments and the experimental results for a closely related
hyperkagome system, we have performed neutron diffraction measurements on a
single crystal sample of GGG in an applied magnetic field. The measurements
reveal that the H-T phase diagram of GGG is much more complicated than
previously assumed. The application of an external field at low T results in an
intensity change for most of the magnetic peaks which can be divided into three
distinct sets: ferromagnetic, commensurate antiferromagnetic, and
incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440)
and (220)) have intensities that increase with the field and saturate at high
field. The antiferromagnetic reflections have intensities that grow in low
fields, reach a maximum at an intermediate field (apart from the (002) peak
which shows two local maxima) and then decrease and disappear above 2 T. These
AFM peaks appear, disappear and reach maxima in different fields. We conclude
that the competition between magnetic interactions and alternative ground
states prevents GGG from ordering in zero field. It is, however, on the verge
of ordering and an applied magnetic field can be used to crystallise ordered
components. The range of ferromagnetic and antiferromagnetic propagation
vectors found reflects the complex frustration in GGG.Comment: 6 pages, 7 figures, HFM 2008 conference pape
Gapped and gapless short range ordered magnetic states with wavevectors in the pyrochlore magnet TbTiO
Recent low temperature heat capacity (C) measurements on polycrystalline
samples of the pyrochlore antiferromagnet TbTiO
have shown a strong sensitivity to the precise Tb concentration , with a
large anomaly exhibited for at K and no such
anomaly and corresponding phase transition for . We have grown single
crystal samples of TbTiO, with approximate
composition , and , where the single
crystal exhibits a large C anomaly at =0.45 K, but neither the
nor the single crystals display any such anomaly. We
present new time-of-flight neutron scattering measurements on the
and the samples which show strong
quasi-Bragg peaks at low
temperatures characteristic of short range antiferromagnetic spin ice (AFSI)
order at zero magnetic field but only under field-cooled conditions, as was
previously observed in our single crystal. These results show that
the strong quasi-Bragg peaks
and gapped AFSI state at low temperatures under field cooled conditions are
robust features of TbTiO, and are not correlated with the presence
or absence of the C anomaly and phase transition at low temperatures.
Further, these results show that the ordered state giving rise to the C
anomaly is confined to for
TbTiO, and is not obviously connected with
conventional order of magnetic dipole degrees of freedom.Comment: 7 pages, 3 figure
- β¦