159 research outputs found

    Family size and support of older adults in urban and rural China: current effects and future implications

    Get PDF
    Journal ArticleChina will experience rapid growth in the proportion and number of older people in its population in the near future as a consequence of an extraordinarily rapid decline in fertility over the past several decades. Total fertility rates were as high as 7.5 in the early 1950s, but have fallen to below replacement level in recent years, with the sharpest declines occurring in the late 1970s and early 1980s, around the time that China began implementing its one-child policy (Liu 1988; Poston 1992; T.H. Yuan et al. 1992). The aging of China has also been influenced by a decline in infant mortality during and after the 1950s, which increased survivorship among a "baby-boom" cohort, who were subsequently the first to experience a rapid decline in fertility and the one-child policy (Zhenghua and Lingguang 2000). Thus, China now has a large cohort of adults who are in or nearing the end of their childbearing ages and are experiencing much lower birth rates than did their predecessors. This next generation of elderly persons will make up more than 20% of China's total population and will put the proportion of older adults in China on par with or surpassing that in Western developed countries

    Trends and transitions in children\u27s coresidence with older adults in Beijing municipality

    Get PDF
    The reduction in family size in China and concurrent social and economic change are raising concerns that traditional sources of support may be eroding. This Population Council working paper paper examines a) whether rates of coresidence between older adults and their adult children in the Beijing municipality of China have been declining, and b) the determinants of coresidence and coresidence transitions. Results suggest that family support structures for the elderly, when they are facilitated through coresidence, remain basically intact, particularly for those who require the greatest amount of support. Further assessment is required to elucidate the effects of availability, need, and demographic characteristics on the provision of support regardless of coresidence status

    High-Strength Nanotwinned Al Alloys with 9R Phase

    Get PDF
    Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes

    Quantifying human-environment interactions using videography in the context of infectious disease transmission

    Get PDF
    Quantitative data on human-environment interactions are needed to fully understand infectious disease transmission processes and conduct accurate risk assessments. Interaction events occur during an individual's movement through, and contact with, the environment, and can be quantified using diverse methodologies. Methods that utilize videography, coupled with specialized software, can provide a permanent record of events, collect detailed interactions in high resolution, be reviewed for accuracy, capture events difficult to observe in real-time, and gather multiple concurrent phenomena. In the accompanying video, the use of specialized software to capture humanenvironment interactions for human exposure and disease transmission is highlighted. Use of videography, combined with specialized software, allows for the collection of accurate quantitative representations of human-environment interactions in high resolution. Two specialized programs include the Virtual Timing Device for the Personal Computer, which collects sequential microlevel activity time series of contact events and interactions, and LiveTrak, which is optimized to facilitate annotation of events in real-time. Opportunities to annotate behaviors at high resolution using these tools are promising, permitting detailed records that can be summarized to gain information on infectious disease transmission and incorporated into more complex models of human exposure and risk

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Whole genome sequencing in paediatric channelopathy and cardiomyopathy

    Get PDF
    BackgroundPrecision medicine in paediatric cardiac channelopathy and cardiomyopathy has a rapid advancement over the past years. Compared to conventional gene panel and exome-based testing, whole genome sequencing (WGS) offers additional coverage at the promoter, intronic regions and the mitochondrial genome. However, the data on use of WGS to evaluate the genetic cause of these cardiovascular conditions in children and adolescents are limited.MethodsIn a tertiary paediatric cardiology center, we recruited all patients diagnosed with cardiac channelopathy and cardiomyopathy between the ages of 0 and 18 years old, who had negative genetic findings with prior gene panel or exome-based testing. After genetic counselling, blood samples were collected from the subjects and both their parents for WGS analysis.ResultsA total of 31 patients (11 cardiac channelopathy and 20 cardiomyopathy) were recruited. Four intronic splice-site variants were identified in three cardiomyopathy patients, which were not identified in previous whole exome sequencing. These included a pathogenic variant in TAFAZZIN:c.284+5G>A (Barth syndrome), a variant of unknown significance (VUS) in MYBPC3:c.1224-80G>A and 2 compound heterozygous LP variants in LZTR1 (LZTR1:c.1943-256C>T and LZTR1:c1261-3C>G) in a patient with clinical features of RASopathy. There was an additional diagnostic yield of 1.94% using WGS for identification of intronic variants, on top of conventional gene testing.ConclusionWGS plays a role in identifying additional intronic splice-site variants in paediatric patients with isolated cardiomyopathy. With the demonstrated low extra yield of WGS albeit its ability to provide potential clinically important information, WGS should be considered in selected paediatric cases of cardiac channelopathy and cardiomyopathy in a cost-effective manner

    High-Strength Nanotwinned Al Alloys with 9R Phase

    Get PDF
    Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes

    Militarization and social development in the Third World

    Full text link
    In this study we integrated the modernization and dependency theories of development to suggest the ways whereby militarization can affect development. We examined the effects of three components of militarization highlighted in these theories on the social development of ninety-two developing countries. Overall, our findings support the dependency theory's emphasis on the detrimental impact of international trade on disadvantaged nations. There is a significant negative correlation between arms import and social development. Arms export and indigenous spending are correlated with social development in the expected directions but their beta coefficients are not significant. The diverse ways these three aspects of militarization have been shown to affect social development help to explain some of the conflicting findings in the literature and point to the need to study these variables in their disaggregated form.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69141/2/10.1177_144078339503100105.pd

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    Get PDF
    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results
    corecore