3,086 research outputs found
Unconditionally secure key distillation from multi-photons
In this paper, we prove that the unconditionally secure key can be
surprisingly extracted from {\it multi}-photon emission part in the photon
polarization-based QKD. One example is shown by explicitly proving that one can
indeed generate an unconditionally secure key from Alice's two-photon emission
part in ``Quantum cryptography protocols robust against photon number splitting
attacks for weak laser pulses implementations'' proposed by V. Scarani {\it et
al.,} in Phys. Rev. Lett. {\bf 92}, 057901 (2004), which is called SARG04. This
protocol uses the same four states as in BB84 and differs only in the classical
post-processing protocol. It is, thus, interesting to see how the classical
post-processing of quantum key distribution might qualitatively change its
security. We also show that one can generate an unconditionally secure key from
the single to the four-photon part in a generalized SARG04 that uses six
states. Finally, we also compare the bit error rate threshold of these
protocols with the one in BB84 and the original six-state protocol assuming a
depolarizing channel.Comment: The title has changed again. We considerably improved our
presentation, and furthermore we proposed & analyzed a security of a modified
SARG04 protocol, which uses six state
On the performance of two protocols: SARG04 and BB84
We compare the performance of BB84 and SARG04, the later of which was
proposed by V. Scarani et al., in Phys. Rev. Lett. 92, 057901 (2004).
Specifically, in this paper, we investigate SARG04 with two-way classical
communications and SARG04 with decoy states. In the first part of the paper, we
show that SARG04 with two-way communications can tolerate a higher bit error
rate (19.4% for a one-photon source and 6.56% for a two-photon source) than
SARG04 with one-way communications (10.95% for a one-photon source and 2.71%
for a two-photon source). Also, the upper bounds on the bit error rate for
SARG04 with two-way communications are computed in a closed form by considering
an individual attack based on a general measurement. In the second part of the
paper, we propose employing the idea of decoy states in SARG04 to obtain
unconditional security even when realistic devices are used. We compare the
performance of SARG04 with decoy states and BB84 with decoy states. We find
that the optimal mean-photon number for SARG04 is higher than that of BB84 when
the bit error rate is small. Also, we observe that SARG04 does not achieve a
longer secure distance and a higher key generation rate than BB84, assuming a
typical experimental parameter set.Comment: 48 pages, 10 figures, 1 column, changed Figs. 7 and
Directional optical switching and transistor functionality using optical parametric oscillation in a spinor polariton fluid
Over the past decade, spontaneously emerging patterns in the density of
polaritons in semiconductor microcavities were found to be a promising
candidate for all-optical switching. But recent approaches were mostly
restricted to scalar fields, did not benefit from the polariton's unique
spin-dependent properties, and utilized switching based on hexagon far-field
patterns with 60{\deg} beam switching (i.e. in the far field the beam
propagation direction is switched by 60{\deg}). Since hexagon far-field
patterns are challenging, we present here an approach for a linearly polarized
spinor field, that allows for a transistor-like (e.g., crucial for
cascadability) orthogonal beam switching, i.e. in the far field the beam is
switched by 90{\deg}. We show that switching specifications such as
amplification and speed can be adjusted using only optical means
Solar neutrino interactions: Using charged currents at SNO to tell neutral currents at Super-Kamiokande
In the presence of flavor oscillations, muon and tau neutrinos can contribute
to the Super-Kamiokande (SK) solar neutrino signal through the neutral current
process \nu_{\mu,\tau} e^{-}\to \nu_{\mu,\tau} e^{-}. We show how to separate
the \nu_e and \nu_{\mu,\tau} event rates in SK in a model independent way, by
using the rate of the charged current process \nu_e d \to p p e^{-} from the
Sudbury Neutrino Observatory (SNO) experiment, with an appropriate choice of
the SK and SNO energy thresholds. Under the additional hypothesis of no
oscillations into sterile states, we also show how to determine the absolute
^{8}B neutrino flux from the same data set, independently of the \nu_e survival
probability.Comment: 14 pages (RevTeX), incl. 3 figures (epsf), submitted to Phys. ReV.
A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort
P2P live streaming towards best video quality
Reproduced with the kind permission of the copyright owne
Mestastable State Population in Laser Induced Plasmas
Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions
A simple proof of the unconditional security of quantum key distribution
Quantum key distribution is the most well-known application of quantum
cryptography. Previous proposed proofs of security of quantum key distribution
contain various technical subtleties. Here, a conceptually simpler proof of
security of quantum key distribution is presented. The new insight is the
invariance of the error rate of a teleportation channel: We show that the error
rate of a teleportation channel is independent of the signals being
transmitted. This is because the non-trivial error patterns are permuted under
teleportation. This new insight is combined with the recently proposed quantum
to classical reduction theorem. Our result shows that assuming that Alice and
Bob have fault-tolerant quantum computers, quantum key distribution can be made
unconditionally secure over arbitrarily long distances even against the most
general type of eavesdropping attacks and in the presence of all types of
noises.Comment: 13 pages, extended abstract. Comments will be appreciate
Security proof of a three-state quantum key distribution protocol without rotational symmetry
Standard security proofs of quantum key distribution (QKD) protocols often
rely on symmetry arguments. In this paper, we prove the security of a
three-state protocol that does not possess rotational symmetry. The three-state
QKD protocol we consider involves three qubit states, where the first two
states, |0_z> and |1_z>, can contribute to key generation and the third state,
|+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been
proposed and implemented experimentally in some frequency-based QKD systems
where the three states can be prepared easily. Thus, by founding on the
security of this three-state protocol, we prove that these QKD schemes are, in
fact, unconditionally secure against any attacks allowed by quantum mechanics.
The main task in our proof is to upper bound the phase error rate of the qubits
given the bit error rates observed. Unconditional security can then be proved
not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light
source and imperfect threshold detectors. Our result on the phase error rate
upper bound is independent of the loss in the channel. Also, we compare the
three-state protocol with the BB84 protocol. For the single-photon source case,
our result proves that the BB84 protocol strictly tolerates a higher quantum
bit error rate than the three-state protocol; while for the coherent-source
case, the BB84 protocol achieves a higher key generation rate and secure
distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column
- âŠ