23,793 research outputs found
Structure of the Chiral Scalar Superfield in Ten Dimensions
We describe the tensors and spinor-tensors included in the -expansion
of the ten-dimensional chiral scalar superfield. The product decompositions of
all the irreducible structures with and the tensor are
provided as a first step towards the obtention of a full tensor calculus for
the superfield.Comment: 50 pages, UCLA/94/TEP/
Relation between Kitaev magnetism and structure in -RuCl
Raman scattering has been employed to investigate lattice and magnetic
excitations of the honeycomb Kitaev material -RuCl and its
Heisenberg counterpart CrCl. Our phonon Raman spectra give evidence for a
first-order structural transition from a monoclinic to a rhombohedral structure
for both compounds. Significantly, only -RuCl features a large
thermal hysteresis, consistent with the formation of a wide phase of
coexistence. In the related temperature interval of K, we observe a
hysteretic behavior of magnetic excitations as well. The stronger magnetic
response in the rhombohedral compared to the monoclinic phase evidences a
coupling between the crystallographic structure and low-energy magnetic
response. Our results demonstrate that the Kitaev magnetism concomitant with
fractionalized excitations is susceptible to small variations of bonding
geometry.Comment: 9 pages, 8 figures, To appear in PR
Orientational Melting in Carbon Nanotube Ropes
Using Monte Carlo simulations, we investigate the possibility of an
orientational melting transition within a "rope" of (10,10) carbon nanotubes.
When twisting nanotubes bundle up during the synthesis, orientational
dislocations or twistons arise from the competition between the anisotropic
inter-tube interactions, which tend to align neighboring tubes, and the torsion
rigidity that tends to keep individual tubes straight. We map the energetics of
a rope containing twistons onto a lattice gas model and find that the onset of
a free "diffusion" of twistons, corresponding to orientational melting, occurs
at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files
Electron-boson spectral density of LiFeAs obtained from optical data
We analyze existing optical data in the superconducting state of LiFeAs at 4 K, to recover its electron-boson spectral density. A maximum entropy
technique is employed to extract the spectral density from
the optical scattering rate. Care is taken to properly account for elastic
impurity scattering which can importantly affect the optics in an -wave
superconductor, but does not eliminate the boson structure. We find a robust
peak in centered about 8.0 meV or 5.3 (with 17.6 K). Its position in energy agrees well with a similar
structure seen in scanning tunneling spectroscopy (STS). There is also a peak
in the inelastic neutron scattering (INS) data at this same energy. This peak
is found to persist in the normal state at 23 K. There is evidence that
the superconducting gap is anisotropic as was also found in low temperature
angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure
Theoretical study of metal borides stability
We have recently identified metal-sandwich (MS) crystal structures and shown
with ab initio calculations that the MS lithium monoboride phases are favored
over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73,
180501(R) (2006)]. According to previous studies synthesized lithium monoboride
tends to be boron-deficient, however the mechanism leading to this phenomenon
is not fully understood. We propose a simple model that explains the
experimentally observed off-stoichiometry and show that compared to such
boron-deficient phases the MS-LiB compounds still have lower formation enthalpy
under high pressures. We also investigate stability of MS phases for a large
class of metal borides. Our ab initio results suggest that MS noble metal
borides are less unstable than the corresponding AlB-type phases but not
stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure
Anomalous double peak structure in Nb/Ni superconductor/ferromagnet tunneling DOS
We have experimentally investigated the density of states (DOS) in Nb/Ni
(S/F) bilayers as a function of Ni thickness, . Our thinnest samples show
the usual DOS peak at , whereas intermediate-thickness samples
have an anomalous ``double-peak'' structure. For thicker samples ( nm), we see an ``inverted'' DOS which has previously only been reported in
superconductor/weak-ferromagnet structures. We analyze the data using the
self-consistent non-linear Usadel equation and find that we are able to
quantitatively fit the features at if we include a large amount
of spin-orbit scattering in the model. Interestingly, we are unable to
reproduce the sub-gap structure through the addition of any parameter(s).
Therefore, the observed anomalous sub-gap structure represents new physics
beyond that contained in the present Usadel theory.Comment: 4 pages, 3 figure
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Who Contributes to the Knowledge Sharing Economy?
Information sharing dynamics of social networks rely on a small set of
influencers to effectively reach a large audience. Our recent results and
observations demonstrate that the shape and identity of this elite, especially
those contributing \emph{original} content, is difficult to predict.
Information acquisition is often cited as an example of a public good. However,
this emerging and powerful theory has yet to provably offer qualitative
insights on how specialization of users into active and passive participants
occurs.
This paper bridges, for the first time, the theory of public goods and the
analysis of diffusion in social media. We introduce a non-linear model of
\emph{perishable} public goods, leveraging new observations about sharing of
media sources. The primary contribution of this work is to show that
\emph{shelf time}, which characterizes the rate at which content get renewed,
is a critical factor in audience participation. Our model proves a fundamental
\emph{dichotomy} in information diffusion: While short-lived content has simple
and predictable diffusion, long-lived content has complex specialization. This
occurs even when all information seekers are \emph{ex ante} identical and could
be a contributing factor to the difficulty of predicting social network
participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201
Electronic structures of doped anatase : (M=Co, Mn, Fe, Ni)
We have investigated electronic structures of a room temperature diluted
magnetic semiconductor : Co-doped anatase . We have obtained the
half-metallic ground state in the local-spin-density approximation(LSDA) but
the insulating ground state in the LSDA++SO incorporating the spin-orbit
interaction. In the stoichiometric case, the low spin state of Co is realized
with the substantially large orbital moment. However, in the presence of oxygen
vacancies near Co, the spin state of Co becomes intermediate. The
ferromagnetisms in the metallic and insulating phases are accounted for by the
double-exchange-like and the superexchange mechanism, respectively. Further,
the magnetic ground states are obtained for Mn and Fe doped ,
while the paramagnetic ground state for Ni-doped .Comment: 5 pages, 4 figure
- …