23,793 research outputs found

    Structure of the Chiral Scalar Superfield in Ten Dimensions

    Full text link
    We describe the tensors and spinor-tensors included in the θ\theta-expansion of the ten-dimensional chiral scalar superfield. The product decompositions of all the irreducible structures with θ\theta and the θ2\theta^2 tensor are provided as a first step towards the obtention of a full tensor calculus for the superfield.Comment: 50 pages, UCLA/94/TEP/

    Relation between Kitaev magnetism and structure in α\alpha-RuCl3_3

    Full text link
    Raman scattering has been employed to investigate lattice and magnetic excitations of the honeycomb Kitaev material α\alpha-RuCl3_3 and its Heisenberg counterpart CrCl3_3. Our phonon Raman spectra give evidence for a first-order structural transition from a monoclinic to a rhombohedral structure for both compounds. Significantly, only α\alpha-RuCl3_3 features a large thermal hysteresis, consistent with the formation of a wide phase of coexistence. In the related temperature interval of 7017070-170 K, we observe a hysteretic behavior of magnetic excitations as well. The stronger magnetic response in the rhombohedral compared to the monoclinic phase evidences a coupling between the crystallographic structure and low-energy magnetic response. Our results demonstrate that the Kitaev magnetism concomitant with fractionalized excitations is susceptible to small variations of bonding geometry.Comment: 9 pages, 8 figures, To appear in PR

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    Electron-boson spectral density of LiFeAs obtained from optical data

    Full text link
    We analyze existing optical data in the superconducting state of LiFeAs at T=T = 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density I2χ(ω)I^2\chi(\omega) from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an ss-wave superconductor, but does not eliminate the boson structure. We find a robust peak in I2χ(ω)I^2\chi(\omega) centered about ΩR\Omega_R \cong 8.0 meV or 5.3 kBTck_B T_c (with Tc=T_c = 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at T=T = 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure

    Theoretical study of metal borides stability

    Full text link
    We have recently identified metal-sandwich (MS) crystal structures and shown with ab initio calculations that the MS lithium monoboride phases are favored over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73, 180501(R) (2006)]. According to previous studies synthesized lithium monoboride tends to be boron-deficient, however the mechanism leading to this phenomenon is not fully understood. We propose a simple model that explains the experimentally observed off-stoichiometry and show that compared to such boron-deficient phases the MS-LiB compounds still have lower formation enthalpy under high pressures. We also investigate stability of MS phases for a large class of metal borides. Our ab initio results suggest that MS noble metal borides are less unstable than the corresponding AlB2_2-type phases but not stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure

    Anomalous double peak structure in Nb/Ni superconductor/ferromagnet tunneling DOS

    Full text link
    We have experimentally investigated the density of states (DOS) in Nb/Ni (S/F) bilayers as a function of Ni thickness, dFd_F. Our thinnest samples show the usual DOS peak at ±Δ0\pm\Delta_0, whereas intermediate-thickness samples have an anomalous ``double-peak'' structure. For thicker samples (dF3.5d_F \geq 3.5 nm), we see an ``inverted'' DOS which has previously only been reported in superconductor/weak-ferromagnet structures. We analyze the data using the self-consistent non-linear Usadel equation and find that we are able to quantitatively fit the features at ±Δ0\pm\Delta_0 if we include a large amount of spin-orbit scattering in the model. Interestingly, we are unable to reproduce the sub-gap structure through the addition of any parameter(s). Therefore, the observed anomalous sub-gap structure represents new physics beyond that contained in the present Usadel theory.Comment: 4 pages, 3 figure

    Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold

    Full text link
    We have investigated the non-classical response of solid 4He confined in porous gold set to torsional oscillation. When solid helium is grown rapidly, nearly 7% of the solid helium appears to be decoupled from the oscillation below about 200 mK. Dissipation appears at temperatures where the decoupling shows maximum variation. In contrast, the decoupling is substantially reduced in slowly grown solid helium. The dynamic response of solid helium was also studied by imposing a sudden increase in the amplitude of oscillation. Extended relaxation in the resonant period shift, suggesting the emergence of the pinning of low energy excitations, was observed below the onset temperature of the non-classical response. The motion of a dislocation or a glassy solid is restricted in the entangled narrow pores and is not likely responsible for the period shift and long relaxation

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Electronic structures of doped anatase TiO2\rm TiO_{2}: Ti1xMxO2\rm Ti_{1-x}M_{x}O_{2} (M=Co, Mn, Fe, Ni)

    Full text link
    We have investigated electronic structures of a room temperature diluted magnetic semiconductor : Co-doped anatase TiO2\rm TiO_{2}. We have obtained the half-metallic ground state in the local-spin-density approximation(LSDA) but the insulating ground state in the LSDA+UU+SO incorporating the spin-orbit interaction. In the stoichiometric case, the low spin state of Co is realized with the substantially large orbital moment. However, in the presence of oxygen vacancies near Co, the spin state of Co becomes intermediate. The ferromagnetisms in the metallic and insulating phases are accounted for by the double-exchange-like and the superexchange mechanism, respectively. Further, the magnetic ground states are obtained for Mn and Fe doped TiO2\rm TiO_{2}, while the paramagnetic ground state for Ni-doped TiO2\rm TiO_{2}.Comment: 5 pages, 4 figure
    corecore