190 research outputs found
Prolonged vase life by salicylic acid treatment and prediction of vase life using petal color senescence of cut lisianthus
This study investigated the effects of exogenous salicylic acid (SA) concentrations (0, 0.1, 0.3, or 0.5 mM), treatment timing (vegetative or reproductive period), and cultivation methods (soil or hydroponic cultivation) on the vase life of four lisianthus cultivars after flower cutting. A 0.5 mM concentration of the SA application during the reproductive period resulted in the longest average vase life of 15.3 d for the Blue Picote cultivar after flower cutting. A colorimeter and a chlorophyll meter were used to observe and quantify petal color changes after cutting, and the color changes during the senescence stages are visualized using a three-dimensional color space. The three-dimensional visualization demonstrated the color senescence for each measurement period. Based on these data, we used automated machine learning algorithms to predict the vase longevity, and the predictive model showed a good accuracy. This model is expected to be widely used in the floricultural industry
Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils
Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize
Characterisation of Pseudomonas aeruginosa related to bovine mastitis
Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitis-affected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates
Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat
<p>Abstract</p> <p>Background</p> <p><it>Trans </it>fat are not desirable in many aspects on health maintenance. Low <it>trans </it>structured fats have been reported to be relatively more safe than <it>trans </it>fats.</p> <p>Methods</p> <p>We examined the effects of low <it>trans </it>structured fat from corn oil (LC), compared with high <it>trans </it>fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high <it>trans </it>fat (10% fat: commercial shortening (CS)) or a low <it>trans </it>fat (LC) diet for 12 weeks.</p> <p>Results</p> <p>LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of <it>trans </it>fatty acids compared to CS.</p> <p>Conclusions</p> <p>We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these <it>apo E</it><sup><it>-/- </it></sup>mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.</p
Metabolic reprogramming of human CD8+ memory T cells through loss of SIRT1.
The expansion of CD8+CD28- T cells, a population of terminally differentiated memory T cells, is one of the most consistent immunological changes in humans during aging. CD8+CD28- T cells are highly cytotoxic, and their frequency is linked to many age-related diseases. As they do not accumulate in mice, many of the molecular mechanisms regulating their fate and function remain unclear. In this paper, we find that human CD8+CD28- T cells, under resting conditions, have an enhanced capacity to use glycolysis, a function linked to decreased expression of the NAD+-dependent protein deacetylase SIRT1. Global gene expression profiling identified the transcription factor FoxO1 as a SIRT1 target involved in transcriptional reprogramming of CD8+CD28- T cells. FoxO1 is proteasomally degraded in SIRT1-deficient CD8+CD28- T cells, and inhibiting its activity in resting CD8+CD28+ T cells enhanced glycolytic capacity and granzyme B production as in CD8+CD28- T cells. These data identify the evolutionarily conserved SIRT1-FoxO1 axis as a regulator of resting CD8+ memory T cell metabolism and activity in humans
Does Tumor Size Influence the Diagnostic Accuracy of Ultrasound-Guided Fine-Needle Aspiration Cytology for Thyroid Nodules?
Background. Fine-needle aspiration cytology (FNAC) is diagnostic standard for thyroid nodules. However, the influence of size on FNAC accuracy remains unclear especially in too small or too large thyroid nodules. The objective of this retrospective cohort study was to investigate the effect of nodule size on FNAC accuracy. Methods. All consecutive patients who underwent thyroidectomy for nodules in 2010 were enrolled. FNAC results (according to the Bethesda system) were compared to pathological diagnosis. The nodules were categorized into groups A–E on the basis of maximal diameter on ultrasound (≤0.5, >0.5–1, >1-2, >2–4, and >4 cm, resp.). Results. There were 502 cases with 690 nodules. Overall FNAC sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 95.4%, 98.2%, 99.4%, 86.4%, and 96.0%, respectively. False-negative rates (FNRs) of groups A–E were 3.2%, 5.1%, 1.3%, 13.3%, and 50%, respectively. Accuracy rates of groups A–E were 96.8%, 94.8%, 99%, 94.7%, and 87.5%, respectively. Conclusion. Although accuracy rates of FNAC in thyroid nodules smaller than 0.5 cm are comparable to the other group, thyroid nodules larger than 4 cm with benign cytology carry a higher risk of malignancy, which suggest that those should be considered for intensive follow-up or repeated biopsy
Evaluation of the transporter-mediated herb-drug interaction potential of DA-9801, a standardized dioscorea extract for diabetic neuropathy, in human in vitro and rat in vivo
BACKGROUND: Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. METHOD: The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. RESULTS: DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC(50) values of 106, 174, 48.1, and 273 μg/mL, respectively, while the other transporters were not inhibited by 300 μg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the C(max) of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is governed by OCT1, OCT2, and OAT3. Moreover, DA-9801 did not affect the pharmacokinetic characteristics of furosemide, as evidenced by its unchanged pharmacokinetic parameters. CONCLUSION: Inhibitory effects of DA-9801 on OCT1, OCT2, and OAT3 observed in vitro may not necessarily translate into in vivo herb-drug interactions in rats even at its maximum effective dose
Calcified Carcinoma of the Gallbladder with Calcified Nodal Metastasis Presenting as a Porcelain Gallbladder: A Case Report
Porcelain gallbladder is regarded as a risk factor of gallbladder cancer. A porcelain gallbladder with calcified regional lymph nodes was found using computed tomography (CT) and magnetic resonance imaging (MRI) in a 43-year-old man who presented with nausea, vomiting, and abdominal pain. His cholecystectomy specimen showed diffuse wall thickening and contained small gallstones. Histological examination revealed diffuse infiltrative adenocarcinoma with extensive intratumoral calcification (calcified carcinoma). The majority of the calcified material was located within or replaced the tumor glands, and was not found in the stroma. A lymph node was totally replaced with a calcified metastatic adenocarcinoma. To the best of our knowledge, only one case of calcified lymph node metastasis from a calcified carcinoma of the gallbladder has been previously reported in the literature. We herein add a case of calcified carcinoma of the gallbladder with calcified lymph node metastasis, presenting as a porcelain gallbladder on CT and MRI
Novel diagnostic biomarkers for pancreatic cancer: assessing methylation status with epigenetic-specific peptide nucleic acid and KRAS mutation in cell-free DNA
PurposePancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with a poor prognosis that poses challenges for diagnosis using traditional tissue-based techniques. DNA methylation alterations have emerged as potential and promising biomarkers for PDAC. In this study, we aimed to assess the diagnostic potential of a novel DNA methylation assay based on epigenetic-specific peptide nucleic acid (Epi-sPNA) in both tissue and plasma samples for detecting PDAC.Materials and methodsThe study involved 46 patients with PDAC who underwent surgical resection. Epi-TOP pancreatic assay was used to detect PDAC-specific epigenetic biomarkers. The Epi-sPNA allowed accurate and rapid methylation analysis without bisulfite sample processing. Genomic DNA extracted from paired normal pancreatic and PDAC tissues was used to assess the diagnostic efficacy of epigenetic biomarkers for PDAC. Subsequent validation was conducted on cell-free DNA (cfDNA) extracted from plasma samples, with 10 individuals represented in each group: PDAC, benign pancreatic cystic neoplasm, and healthy control.ResultsThe combination of seven epigenetic biomarkers (HOXA9, TWIST, WT1, RPRM, BMP3, NPTX2, and BNC1) achieved 93.5% sensitivity and 96.7% specificity in discerning normal pancreatic from PDAC tissues. Plasma cfDNA, analyzed using these markers and KRAS mutations, exhibited a substantial 90.0% sensitivity, 95.0% specificity, and an overall 93.3% accuracy for discriminating PDAC. Notably, cancer antigen 19-9 and carcinoembryonic antigen both had an accuracy of 90.0%.ConclusionOur study suggests that analyzing seven differentially methylated genes with KRAS mutations in cfDNA using the novel Epi-TOP pancreatic assay is a potential blood-based biomarker for the diagnosis of PDAC
Chemokine Lkn-1/CCL15 enhances matrix metalloproteinase-9 release from human macrophages and macrophage-derived foam cells
Atherosclerosis is characterized by a chronic inflammatory disease, and chemokines play an important role in both initiation and progression of atherosclerosis development. Leukotactin-1 (Lkn-1/CCL15), a new member of the human CC chemokine family, is a potent chemoattractant for leukocytes. Our previous study has demonstrated that Lkn-1/CCL15 plays a role in the initiation of atherosclerosis, however, little is currently known whether Lkn-1/CCL15 is associated with the progression of atherosclerosis. Matrix metalloproteinases (MMPs) in human coronary atherosclerotic lesions play a crucial role in the progression of atherosclerosis by altering the vulnerability of plaque rupture. In the present study, we examined whether Lkn-1/CCL15 modulates MMP-9 release, which is a prevalent form expressed by activated macrophages and foam cells. Human THP-1 monocytic cells and/or human peripheral blood monocytes (PBMC) were treated with phorbol myristate acetate to induce their differentiation into macrophages. Foam cells were prepared by the treatment of THP-1 macrophages with human oxidized LDL. The macrophages and foam cells were treated with Lkn-1/CCL15, and the levels of MMP-9 release were measured by Gelatin Zymography. Lkn-1/CCL15 significantly enhanced the levels of MMP-9 protein secretion from THP-1 monocytic cells-derived macrophages, human PBMC-derived macrophages, as well as macrophage-derived foam cell in a dose dependent manner. Our data suggest that the action of Lkn-1/CCL15 on macrophages and foam cells to release MMP-9 may contribute to plaque destabilization in the progression of atherosclerosis
- …