22,126 research outputs found
Temporal Correlations and Persistence in the Kinetic Ising Model: the Role of Temperature
We study the statistical properties of the sum , that is the difference of time spent positive or negative by the
spin , located at a given site of a -dimensional Ising model
evolving under Glauber dynamics from a random initial configuration. We
investigate the distribution of and the first-passage statistics
(persistence) of this quantity. We discuss successively the three regimes of
high temperature (), criticality (), and low temperature
(). We discuss in particular the question of the temperature
dependence of the persistence exponent , as well as that of the
spectrum of exponents , in the low temperature phase. The
probability that the temporal mean was always larger than the
equilibrium magnetization is found to decay as . This
yields a numerical determination of the persistence exponent in the
whole low temperature phase, in two dimensions, and above the roughening
transition, in the low-temperature phase of the three-dimensional Ising model.Comment: 21 pages, 11 PostScript figures included (1 color figure
Non-Classical Response from Quench-Cooled Solid Helium Confined in Porous Gold
We have investigated the non-classical response of solid 4He confined in
porous gold set to torsional oscillation. When solid helium is grown rapidly,
nearly 7% of the solid helium appears to be decoupled from the oscillation
below about 200 mK. Dissipation appears at temperatures where the decoupling
shows maximum variation. In contrast, the decoupling is substantially reduced
in slowly grown solid helium. The dynamic response of solid helium was also
studied by imposing a sudden increase in the amplitude of oscillation. Extended
relaxation in the resonant period shift, suggesting the emergence of the
pinning of low energy excitations, was observed below the onset temperature of
the non-classical response. The motion of a dislocation or a glassy solid is
restricted in the entangled narrow pores and is not likely responsible for the
period shift and long relaxation
Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2
We report results of inelastic-neutron-scattering measurements of low-energy
spin-wave excitations in two structurally distinct families of iron-pnictide
parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different
values of the ordered magnetic moment and N\'eel temperatures, T_N, in the
antiferromagnetic state both compounds exhibit similar spin gaps of the order
of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below
T_N, with no signatures of a precursor gap at temperatures between the
orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find
a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the
out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0),
spin excitations in the ordered state persist down to 20 meV, which implies a
much smaller value of the effective out-of-plane exchange interaction, J_c, as
compared to previous estimates based on fitting the high-energy spin-wave
dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl
Dynamical brittle fractures of nanocrystalline silicon using large-scale electronic structure calculations
A hybrid scheme between large-scale electronic structure calculations is
developed and applied to nanocrystalline silicon with more than 10 atoms.
Dynamical fracture processes are simulated under external loads in the [001]
direction. We shows that the fracture propagates anisotropically on the (001)
plane and reconstructed surfaces appear with asymmetric dimers. Step structures
are formed in larger systems, which is understood as the beginning of a
crossover between nanoscale and macroscale samples.Comment: 10 pages, 4 figure
Charge and Orbital Ordering and Spin State Transition Driven by Structural Distortion in YBaCo_2O_5
We have investigated electronic structures of antiferromagnetic YBaCo_2O_5
using the local spin-density approximation (LSDA) + U method. The charge and
orbital ordered insulating ground state is correctly obtained with the strong
on-site Coulomb interaction. Co^{2+} and Co^{3+} ions are found to be in the
high spin (HS) and intermediate spin (IS) state, respectively. It is considered
that the tetragonal to orthorhombic structural transition is responsible for
the ordering phenomena and the spin states of Co ions. The large contribution
of the orbital moment to the total magnetic moment indicates that the
spin-orbit coupling is also important in YBaCo_2O_5.Comment: 4 pages including 4 figures, Submitted to Phys. Rev. Let
Orientational Melting in Carbon Nanotube Ropes
Using Monte Carlo simulations, we investigate the possibility of an
orientational melting transition within a "rope" of (10,10) carbon nanotubes.
When twisting nanotubes bundle up during the synthesis, orientational
dislocations or twistons arise from the competition between the anisotropic
inter-tube interactions, which tend to align neighboring tubes, and the torsion
rigidity that tends to keep individual tubes straight. We map the energetics of
a rope containing twistons onto a lattice gas model and find that the onset of
a free "diffusion" of twistons, corresponding to orientational melting, occurs
at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files
- …