15 research outputs found

    SwiFT: Swin 4D fMRI Transformer

    Full text link
    Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI.Comment: NeurIPS 202

    Intelligent upper-limb exoskeleton using deep learning to predict human intention for sensory-feedback augmentation

    Full text link
    The age and stroke-associated decline in musculoskeletal strength degrades the ability to perform daily human tasks using the upper extremities. Although there are a few examples of exoskeletons, they need manual operations due to the absence of sensor feedback and no intention prediction of movements. Here, we introduce an intelligent upper-limb exoskeleton system that uses cloud-based deep learning to predict human intention for strength augmentation. The embedded soft wearable sensors provide sensory feedback by collecting real-time muscle signals, which are simultaneously computed to determine the user's intended movement. The cloud-based deep-learning predicts four upper-limb joint motions with an average accuracy of 96.2% at a 200-250 millisecond response rate, suggesting that the exoskeleton operates just by human intention. In addition, an array of soft pneumatics assists the intended movements by providing 897 newton of force and 78.7 millimeter of displacement at maximum. Collectively, the intent-driven exoskeleton can augment human strength by 5.15 times on average compared to the unassisted exoskeleton. This report demonstrates an exoskeleton robot that augments the upper-limb joint movements by human intention based on a machine-learning cloud computing and sensory feedback.Comment: 15 pages, 6 figures, 1 table, Submitted for possible publicatio

    Preparation and Performance Evaluation of Platinum Barium Hexaaluminate Catalyst for Green Propellant Hydroxylamine Nitrate Thrusters

    No full text
    Spacecraft have monopropellant thruster systems for attitude control in the vacuum of space. Hydroxylamine nitrate is a green propellant that has high performance and low toxicity. Owing to the high adiabatic decomposition temperature of the hydroxylamine nitrate propellant, it is necessary to develop a catalyst with high thermal stability. We used a platinum barium hexaaluminate catalyst for green propellant hydroxylamine nitrate thrusters. Barium hexaaluminate support was prepared by a wet impregnation method and heat treatment. Platinum, the active material, was coated on catalyst supports. The Brunauer–Emmett–Teller specific surface was also investigated. X-ray diffraction and scanning electron microscope imagery were used to confirm the formation of barium hexaaluminate. A hydroxylamine nitrate propellant blended with methanol was used for performance evaluation via firing tests of the thruster. The catalytic decomposition performance of each test was evaluated by calculating the characteristic velocity efficiency using the pressure of the chamber at the end of the catalyst bed and the mass flow rate of the propellant. As the catalyst bed was preheated to 350 °C, the characteristic velocity efficiency was 71.9%. Test results revealed that the platinum barium hexaaluminate catalyst is feasible for a hydroxylamine nitrate thruster

    Automatic and Accurate Sleep Stage Classification via a Convolutional Deep Neural Network and Nanomembrane Electrodes

    No full text
    Sleep stage classification is an essential process of diagnosing sleep disorders and related diseases. Automatic sleep stage classification using machine learning has been widely studied due to its higher efficiency compared with manual scoring. Typically, a few polysomnography data are selected as input signals, and human experts label the corresponding sleep stages manually. However, the manual process includes human error and inconsistency in the scoring and stage classification. Here, we present a convolutional neural network (CNN)-based classification method that offers highly accurate, automatic sleep stage detection, validated by a public dataset and new data measured by wearable nanomembrane dry electrodes. First, our study makes a training and validation model using a public dataset with two brain signal and two eye signal channels. Then, we validate this model with a new dataset measured by a set of nanomembrane electrodes. The result of the automatic sleep stage classification shows that our CNN model with multi-taper spectrogram pre-processing achieved 88.85% training accuracy on the validation dataset and 81.52% prediction accuracy on our laboratory dataset. These results validate the reliability of our classification method on the standard polysomnography dataset and the transferability of our CNN model for other datasets measured with the wearable electrodes

    Difficulties of Catalytic Reactor for Hydroxylammonium Nitrate Hybrid Rocket

    No full text

    Platinum/Barium Hexaaluminate Catalyst to Small-Scale Hydroxylamine Nitrate Thrusters Application

    No full text

    Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection

    No full text
    Saliva can be used for health monitoring with non-invasive wearable systems. Such devices, including electrochemical sensors, may provide a safe, fast, and cost-efficient way of detecting target ions. Although salivary ions are known to reflect those in blood, no available clinical device can detect essential ions directly from saliva. Here, we introduce an all-solid-state, flexible film sensor that allows highly accurate detection of sodium levels in saliva, comparable to those in blood. The wireless film sensor system can successfully measure sodium ions from a small volume of infants’ saliva (<400 µL), demonstrating its potential as a continuous health monitor. This study includes the structural characterization and error analysis of a carbon/elastomer-based ion-selective electrode and a reference electrode to confirm the signal reliability. The sensor, composed of a pair of the electrodes, shows good sensitivity (58.9 mV/decade) and selectivity (log K = −2.68 for potassium), along with a broad detection range of 5 × 10−5 ≈ 1 M with a low detection limit of 4.27 × 10−5 M. The simultaneous comparison between the film sensor and a commercial electrochemical sensor demonstrates the accuracy of the flexible sensor and a positive correlation in saliva-to-blood sodium levels. Collectively, the presented study shows the potential of the wireless ion-selective sensor system for a non-invasive, early disease diagnosis with saliva

    Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection

    No full text
    Saliva can be used for health monitoring with non-invasive wearable systems. Such devices, including electrochemical sensors, may provide a safe, fast, and cost-efficient way of detecting target ions. Although salivary ions are known to reflect those in blood, no available clinical device can detect essential ions directly from saliva. Here, we introduce an all-solid-state, flexible film sensor that allows highly accurate detection of sodium levels in saliva, comparable to those in blood. The wireless film sensor system can successfully measure sodium ions from a small volume of infants’ saliva (−5 ≈ 1 M with a low detection limit of 4.27 × 10−5 M. The simultaneous comparison between the film sensor and a commercial electrochemical sensor demonstrates the accuracy of the flexible sensor and a positive correlation in saliva-to-blood sodium levels. Collectively, the presented study shows the potential of the wireless ion-selective sensor system for a non-invasive, early disease diagnosis with saliva

    All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces

    No full text
    Though wearable electronics remain an attractive technology for bioelectronics, fabrication methods that precisely print biocompatible materials for electronics are needed. Here, the authors report an additive manufacturing process that yields all-printed nanomaterial-based wireless electronics
    corecore