64 research outputs found

    25 years of training doctors at WSU: how have we responded to the 1983 UNITRA Council Guidelines?

    Get PDF
    More importantly, Mr VC, Sir, some relatively more recent improvisations have been in the roles I have played in the development, implementation, and evaluation of the Problem-based, and Community-based MB ChB curriculum at the then UNITRA (and now WSU) from 1989 to date4-33; particularly my successful introduction of ‘one tutor per tutorial group’ in our programme8,10,12,14. As I will elaborate in due course, one of the secrets of our success as a medical school has been the adaptation of ideas and practices from diverse parts of the world to make them fit in our settings; and needless to say, this has involved a lot of improvisation

    Clinical pharmacology becomes a specialty in South Africa

    Get PDF
    South Africa recently became the first African country where clinical pharmacology has been approved as a specialty. This article outlines the need for clinical pharmacologists, their role in advancing public health, the potential benefits to the country, and recommendations for ensuring a healthy future for the discipline

    Thermoelectric properties of the degenerate Hubbard model

    Full text link
    We investigate the thermoelectric properties of a system near a pressure driven Mott-Hubbard transition. The dependence of the thermopower and the figure of merit on pressure and temperature within a degenerate Hubbard model for integer filling n=1 is calculated using dynamical mean field theory. Quantum Monte Carlo method is used to solve the impurity model. Obtained results can qualitatively explain thermoelectric properties of various strongly correlated materials.Comment: RevTex, 7 pages, 6 figure

    Material-Specific Investigations of Correlated Electron Systems

    Full text link
    We present the results of numerical studies for selected materials with strongly correlated electrons using a combination of the local-density approximation and dynamical mean-field theory (DMFT). For the solution of the DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed. All simulations were performed on the supercomputer HLRB II at the Leibniz Rechenzentrum in Munich. Specifically we have analyzed the pressure induced metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the fluctuating-valence elemental metal Yb, and the spectral properties of a covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in Science and Engineering, Garching 2009" (Springer

    Invasive Fungal Diseases in Africa: A Critical Literature Review

    Get PDF
    Invasive fungal diseases (IFDs) are of huge concern in resource-limited settings, particularly in Africa, due to the unavailability of diagnostic armamentarium for IFDs, thus making definitive diagnosis challenging. IFDs have non-specific systemic manifestations overlapping with more frequent illnesses, such as tuberculosis, HIV, and HIV-related opportunistic infections and malignancies. Consequently, IFDs are often undiagnosed or misdiagnosed. We critically reviewed the available literature on IFDs in Africa to provide a better understanding of their epidemiology, disease burden to guide future research and interventions. Cryptococcosis is the most encountered IFD in Africa, accounting for most of the HIV-related deaths in sub-Saharan Africa. Invasive aspergillosis, though somewhat underdiagnosed and/or misdiagnosed as tuberculosis, is increasingly being reported with a similar predilection towards people living with HIV. More cases of histoplasmosis are also being reported with recent epidemiological studies, particularly from Western Africa, showing high prevalence rates amongst presumptive tuberculosis patients and patients living with HIV. The burden of pneumocystis pneumonia has reduced significantly probably due to increased uptake of anti-retroviral therapy among people living with HIV both in Africa, and globally. Mucormycosis, talaromycosis, emergomycosis, blastomycosis, and coccidiomycosis have also been reported but with very few studies from the literature. The emergence of resistance to most of the available antifungal drugs in Africa is yet of huge concern as reported in other regions. IFDs in Africa is much more common than it appears and contributes significantly to morbidity and mortality. Huge investment is needed to drive awareness and fungi related research especially in diagnostics and antifungal therapy

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Mixed methods study protocol for combining stakeholder-led rapid evaluation with near real-time continuous registry data to facilitate evaluations of quality of care in intensive care units [version 1; peer review: awaiting peer review]

    Get PDF
    BACKGROUND: Improved access to healthcare in low- and middle-income countries (LMICs) has not equated to improved health outcomes. Absence or unsustained quality of care is partly to blame. Improving outcomes in intensive care units (ICUs) requires delivery of complex interventions by multiple specialties working in concert, and the simultaneous prevention of avoidable harms associated with the illness and the treatment interventions. Therefore, successful design and implementation of improvement interventions requires understanding of the behavioural, organisational, and external factors that determine care delivery and the likelihood of achieving sustained improvement. We aim to identify care processes that contribute to suboptimal clinical outcomes in ICUs located in LMICs and to establish barriers and enablers for improving the care processes. METHODS: Using rapid evaluation methods, we will use four data collection methods: 1) registry embedded indicators to assess quality of care processes and their associated outcomes; 2) process mapping to provide a preliminary framework to understand gaps between current and desired care practices; 3) structured observations of processes of interest identified from the process mapping and; 4) focus group discussions with stakeholders to identify barriers and enablers influencing the gap between current and desired care practices. We will also collect self-assessments of readiness for quality improvement. Data collection and analysis will be performed in parallel and through an iterative process across eight countries: Kenya, India, Malaysia, Nepal, Pakistan, South Africa, Uganda and Vietnam. CONCLUSIONS: The results of our study will provide essential information on where and how care processes can be improved to facilitate better quality of care to critically ill patients in LMICs; thus, reduce preventable mortality and morbidity in ICUs. Furthermore, understanding the rapid evaluation methods that will be used for this study will allow other researchers and healthcare professionals to carry out similar research in ICUs and other health services

    Investigating metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections: protocol for a laboratory-based cross-sectional study

    Get PDF
    Background: Fungal-bacterial cocolonization and coinfections pose an emerging challenge among patients suspected of having pulmonary tuberculosis (PTB); however, the underlying pathogenic mechanisms and microbiome interactions are poorly understood. Understanding how environmental microbes, such as fungi and bacteria, coevolve and develop traits to evade host immune responses and resist treatment is critical to controlling opportunistic pulmonary fungal coinfections. In this project, we propose to study the coexistence of fungal and bacterial microbial communities during chronic pulmonary diseases, with a keen interest in underpinning fungal etiological evolution and the predominating interactions that may exist between fungi and bacteria. Objective: This is a protocol for a study aimed at investigating the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections through determining and characterizing the burden, etiological profiles, microbial communities, and interactions established between fungi and bacteria as implicated among patients with presumptive PTB. Methods: This will be a laboratory-based cross-sectional study, with a sample size of 406 participants. From each participant, 2 sputa samples (one on-spot and one early morning) will be collected. These samples will then be analyzed for both fungal and bacterial etiology using conventional metabolic and molecular (intergenic transcribed spacer and 16S ribosomal DNA–based polymerase chain reaction) approaches. We will also attempt to design a genome-scale metabolic model for pulmonary microbial communities to analyze the composition of the entire microbiome (ie, fungi and bacteria) and investigate host-microbial interactions under different patient conditions. This analysis will be based on the interplays of genes (identified by metagenomics) and inferred from amplicon data and metabolites (identified by metabolomics) by analyzing the full data set and using specific computational tools. We will also collect baseline data, including demographic and clinical history, using a patient-reported questionnaire. Altogether, this approach will contribute to a diagnostic-based observational study. The primary outcome will be the overall fungal and bacterial diagnostic profile of the study participants. Other diagnostic factors associated with the etiological profile, such as incidence and prevalence, will also be analyzed using univariate and multivariate schemes. Odds ratios with 95% CIs will be presented with a statistical significance set at P<.05. Results: The study has been approved by the Mbarara University Research Ethic Committee (MUREC1/7-07/09/20) and the Uganda National Council of Science and Technology (HS1233ES). Following careful scrutiny, the protocol was designed to enable patient enrollment, which began in March 2022 at Mbarara University Teaching Hospital. Data collection is ongoing and is expected to be completed by August 2023, and manuscripts will be submitted for publication thereafter. Conclusions: Through this protocol, we will explore the metabolic and molecular ecological evolution of opportunistic pulmonary fungal coinfections among patients with presumptive PTB. Establishing key fungal-bacterial cross-kingdom synergistic relationships is crucial for instituting fungal bacterial coinfecting etiology. Trial Registration: ISRCTN Registry ISRCTN33572982; https://tinyurl.com/caa2nw69 International Registered Report Identifier (IRRID): DERR1-10.2196/48014 JMIR Res Protoc 2023;12:e48014 doi:10.2196/4801
    corecore