31 research outputs found

    Efficient method for site-directed mutagenesis in large plasmids without subcloning

    Get PDF
    Commonly used methods for site-directed DNA mutagenesis require copying the entire target plasmid. These methods allow relatively easy modification of DNA sequences in small plasmids but become less efficient and faithful for large plasmids, necessitating full sequence verification. Introduction of mutations in larger plasmids requires subcloning, a slow and labor-intensive process, especially for multiple mutations. We have developed an efficient DNA mutagenesis technique, UnRestricted Mutagenesis and Cloning (URMAC) that replaces subcloning steps with quick biochemical reactions. URMAC does not suffer from plasmid size constraints and allows simultaneous introduction of multiple mutations. URMAC involves manipulation of only the mutagenesis target site(s), not the entire plasmid being mutagenized, therefore only partial sequence verification is required. Basic URMAC requires two PCR reactions, each followed by a ligation reaction to circularize the product, with an optional third enrichment PCR step followed by a traditional cloning step that requires two restriction sites. Here, we demonstrate URMAC's speed, accuracy, and efficiency through several examples, creating insertions, deletions or substitutions in plasmids ranging from 2.6 kb to 17 kb without subcloning

    Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations

    No full text
    Therapeutic cancer vaccines have gained significant popularity in recent years as new approaches for specific oncologic indications emerge. Three therapeutic cancer vaccines are FDA approved and one is currently approved by the EMA as monotherapy with modest treatment effects. Combining therapeutic cancer vaccines with other treatment modalities like radiotherapy (RT), hormone therapy, immunotherapy, and/or chemotherapy have been investigated as a means to enhance immune response and treatment efficacy. There is growing preclinical and clinical data that combination of checkpoint inhibitors and vaccines can induce immunogenic intensification with favorable outcomes. Additionally, novel methods for identifying targetable neoantigens hold promise for personalized vaccine development. In this article, we review the rationale for various therapeutic combinations, clinical trial experiences, and future directions. We also highlight the most promising developments that could lead to approval of novel therapeutic cancer vaccines
    corecore