3 research outputs found

    Optimizing preoperative antibiotics in patients with β-lactam allergies: A role for pharmacy

    Get PDF
    PURPOSE: Patients with a reported β-lactam allergy (BLA) are often given alternative perioperative antibiotic prophylaxis, increasing risk of surgical site infections (SSIs), acute kidney injury (AKI), and Clostridioides difficile infection (CDI). The purpose of this study was to implement and evaluate a pharmacist-led BLA clarification interview service in the preoperative setting. METHODS: A pharmacist performed BLA clarification telephone interviews before elective procedures from November 2018 to March 2019. On the basis of allergy history and a decision algorithm, first-line preoperative antibiotics, alternative antibiotics, or allergy testing referral was recommended. The pharmacist intervention (PI) group was compared to a standard of care (SOC) group who underwent surgery from November 2017 to March 2018. RESULTS: Eighty-seven patients were included, with 50 (57%) and 37 (43%) in the SOC and PI groups, respectively. The most common surgeries included orthopedic surgery in 41 patients (47%) and neurosurgery in 17 patients (20%). In the PI group, all BLA labels were updated after interview. Twenty-three patients were referred for allergy testing, 12 of the 23 (52%) completed BLA testing, and penicillin allergies were removed for 9 of the 12 patients. Overall, 28 of the 37 (76%) pharmacy antibiotic recommendations were accepted. Cefazolin use significantly increased from 28% to 65% after the intervention (P = 0.001). SSI occurred in 5 (10%) patients in the SOC group and no patients in the PI group (P = 0.051). All of these SSIs were associated with alternative antibiotics. Incidence of AKI and CDI was similar between the groups. No allergic reactions occurred in either group. CONCLUSION: Implementation of a pharmacy-driven BLA reconciliation significantly increased β-lactam preoperative use without negative safety outcomes

    Pharmacokinetic and pharmacodynamic considerations of antibiotics and antifungals in liver transplantation recipients

    No full text
    The liver plays a major role in drug metabolism. Liver transplantation impacts the intrinsic metabolic capability and extrahepatic mechanisms of drug disposition and elimination. Different levels of inflammation and oxidative stress during transplantation, the process of liver regeneration, and the characteristics of the graft alter the amount of functional hepatocytes and activity of liver enzymes. Binding of drugs to plasma proteins is affected by the hyperbilirubinemia status and abnormal synthesis of albumin and alpha-1-acid glycoproteins. Postoperative intensive care complications such as biliary, circulatory, and cardiac also impact drug distribution. Renally eliminated antimicrobials commonly present reduced clearance due to hepatorenal syndrome and the use of nephrotoxic immunosuppressants. In addition, liver transplantation recipients are particularly susceptible to multidrug-resistant infections due to frequent manipulation, multiple hospitalizations, invasive devices, and frequent use of empiric broad-spectrum therapy. The selection of appropriate anti-infective therapy must consider the pathophysiological changes after transplantation that impact the pharmacokinetics and pharmacodynamics of antibiotics and antifungal drugs
    corecore