11 research outputs found

    Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones

    No full text
    Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor superfamily, is known to inhibit osteoclastogenesis by acting as a soluble decoy receptor for the receptor activator of NF-kB ligand (RANKL). We report the presence of OPG on the membrane of osteoclasts and the possibility of the direct action of OPG on them. Highly pure osteoclast precursors were isolated from mouse long bones and induced to differentiate into mature osteoclasts by M-CSF and soluble RANKL (sRANKL). The presence of OPG on the membrane of these cells was confirmed by western blotting and immunostaining. Furthermore, sRANKL was found to be bound to the OPG on the osteoclast precursors. These results suggest that OPG might have a new role during the differentiation of osteoclasts beyond its role as a soluble decoy receptor. The mechanism of the existence of OPG on osteoclast precursors remains to be found.K.M. Woo was supported by grant KRF-99-003-F00337 F4109 from the Korea Research Foundation. K.-K. Kim was supported by SRC fund to IRC(the Immunomodulation Research Center), University of Ulsan, from KOSEF and Ministry of Korean Science and Technology

    Identification of cell surface receptors for murine macrophage inflammatory protein-1alpha

    No full text
    We have produced recombinant proteins for a cytokine, L2G25BP (macrophage inflammatory protein-1 alpha) (MIP-1 alpha). By using the recombinant protein (rMIP-1 alpha), receptors for MIP-1 alpha were identified on Con A-stimulated and unstimulated CTLL-R8, a T cell line, and LPS-stimulated RAW 264.7, a macrophage cell line. The 125I-rMIP-1 alpha binds to the receptor in a specific and saturable manner. Scatchard analysis indicated a single class of high affinity receptor, with a Kd of approximately 1.5 x 10(-9) M and approximately 1200 binding sites/Con A-stimulated CTLL-R8 cell and a Kd of 0.9 x 10(-9) M and approximately 380 binding sites/RAW 264.7 cell. 125I-rMIP-1 alpha binding was inhibited by unlabeled rMIP-1 alpha in a dose-dependent manner, but not by IL-1 alpha or IL-2. rMIP-1 alpha inhibited the proliferation of unstimulated CTLL-R8 cells. Rabbit anti-rMIP-1 alpha antibodies blocked the growth-inhibitory effect of the rMIP-1 alpha on CTLL-R8 cells

    TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption

    No full text
    A newly identified member of the tumor necrosis factor receptor (TNFR) superfamily shows activities associated with osteoclastogenesis inhibition and fibroblast proliferation. This new member, called TR1, was identified from a search of an expressed sequence tag database, and encodes 401 amino acids with a 21-residue signal sequence. Unlike other members of TNFR, TR1 does not contain a transmembrane domain and is secreted as a 62 kDa glycoprotein. TR1 gene maps to chromosome 8q23-24.1 and its mRNA is abundantly expressed on primary osteoblasts, osteogenic sarcoma cell lines, and primary fibroblasts. The receptors for TR1 were detected on a monocytic cell line (THP-1) and in human fibroblasts. Scatchard analyses indicated two classes of high and medium-high affinity receptors with a kD of approximately 45 and 320 pM, respectively. Recombinant TR1 induced proliferation of human foreskin fibroblasts and potentiated TNF-induced proliferation in these cells. In a coculture system of osteoblasts and bone marrow cells, recombinant TR1 completely inhibited the differentiation of osteoclast-like multinucleated cell formation in the presence of several bone-resorbing factors. TR1 also strongly inhibited bone-resorbing function on dentine slices by mature osteoclasts and decreased 45Ca release in fetal long-bone organ cultures. Anti-TR1 monoclonal antibody promoted the formation of osteoclasts in mouse marrow culture assays. These results indicate that TR1 has broad biological activities in fibroblast growth and in osteoclast differentiation and its functions.11

    TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption

    No full text
    A newly identified member of the tumor necrosis factor receptor (TNFR) superfamily shows activities associated with osteoclastogenesis inhibition and fibroblast proliferation. This new member, called TR1, was identified from a search of an expressed sequence tag database, and encodes 401 amino acids with a 21-residue signal sequence. Unlike other members of TNFR, TR1 does not contain a transmembrane domain and is secreted as a 62 kDa glycoprotein. TR1 gene maps to chromosome 8q23–24.1 and its mRNA is abundantly expressed on primary osteoblasts, osteogenic sarcoma cell lines, and primary fibroblasts. The receptors for TR1 were detected on a monocytic cell line (THP-1) and in human fibroblasts. Scatchard analyses indicated two classes of high and medium-high affinity receptors with a kD of approximately 45 and 320 pM, respectively. Recombinant TR1 induced proliferation of human foreskin fibroblasts and potentiated TNF-induced proliferation in these cells. In a coculture system of osteoblasts and bone marrow cells, recombinant TR1 completely inhibited the differentiation of osteoclast-like multinucleated cell formation in the presence of several bone-resorbing factors. TR1 also strongly inhibited bone-resorbing function on dentine slices by mature osteoclasts and decreased 45Ca release in fetal long-bone organ cultures. Anti-TR1 monoclonal antibody promoted the formation of osteoclasts in mouse marrow culture assays. These results indicate that TR1 has broad biological activities in fibroblast growth and in osteoclast differentiation and its functions.—Kwon, B. S., Wang, S., Udagawa, N., Haridas, V., Lee, Z. H., Kim, K. K., Oh, K.-O., Greene, J., Li, Y., Su, J., Gentz, R., Aggarwal, B. B., Ni, J. TR1, a new member of tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J. 12, 845–854 (1998

    A Newly Identified Member of the Tumor Necrosis Factor Receptor Superfamily with a Wide Tissue Distribution and Involvement in Lymphocyte Activation

    No full text
    The tumor necrosis factor receptor (TNFR) superfamily consists of approximately 10 characterized members of human proteins. We have identified a new member of the TNFR superfamily, TR2, from a search of an expressed sequence tag data base. cDNA cloning and Northern blot hybridization demonstrated multiple mRNA species, of which a 1.7-kilobase form was most abundant. However, TR2 is encoded by a single gene which, maps to chromosome 1p36.22–36.3, in the same region as several other members of the TNFR superfamily. The most abundant TR2 open reading frame encodes a 283-amino acid single transmembrane protein with a 36-residue signal sequence, two perfect and two imperfect TNFR-like cysteine-rich domains, and a short cytoplasmic tail with some similarity to 4–1BB and CD40. TR2 mRNA is expressed in multiple human tissues and cell lines and shows a constitutive and relatively high expression in peripheral blood T cells, B cells, and monocytes. A TR2-Fc fusion protein inhibited a mixed lymphocyte reaction-mediated proliferation suggesting that the receptor and/or its ligand play a role in T cell stimulation.This work was supported by National Institutes of Health Grants AI 28175 and AR 40248 (to B. S. K.) and by a postdoctoral fellowship from the American Heart Association, Indiana Affiliate (to S. W.)

    A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation

    No full text
    The tumor necrosis factor receptor (TNFR) superfamily consists of approximately 10 characterized members of human proteins. We have identified a new member of the TNFR superfamily, TR2, from a search of an expressed sequence tag data base. cDNA cloning and Northern blot hybridization demonstrated multiple mRNA species, of which a 1.7-kilobase form was most abundant. However, TR2 is encoded by a single gene which, maps to chromosome 1p36.22–36.3, in the same region as several other members of the TNFR superfamily. The most abundant TR2 open reading frame encodes a 283-amino acid single transmembrane protein with a 36-residue signal sequence, two perfect and two imperfect TNFR-like cysteine-rich domains, and a short cytoplasmic tail with some similarity to 4–1BB and CD40. TR2 mRNA is expressed in multiple human tissues and cell lines and shows a constitutive and relatively high expression in peripheral blood T cells, B cells, and monocytes. A TR2-Fc fusion protein inhibited a mixed lymphocyte reaction-mediated proliferation suggesting that the receptor and/or its ligand play a role in T cell stimulation
    corecore