3,001 research outputs found
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV
A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is
presented. A photon excess above background from pi^0 --> gamma+gamma, eta -->
gamma+gamma, and other decays is observed in the transverse momentum range 5.5
< p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative
QCD calculation. Within errors, good agreement is found between the QCD
calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to
Physical Review D. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Scaling properties of proton and anti-proton production in sqrt(s_NN) = 200 GeV Au + Au collisions
We report on the yield of protons and anti-protons, as a function of
centrality and transverse momentum, in Au+Au collisions at sqrt(s_NN) = 200 GeV
measured at mid-rapidity by the PHENIX experiment at RHIC. In central
collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a
significant fraction of all produced particles are protons and anti-protons.
They show a centrality-scaling behavior different from that of pions. The
p-bar/pion and p/pion ratios are enhanced compared to peripheral Au+Au, p+p,
and electron+positron collisions. This enhancement is limited to p_T < 5 GeV/c
as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5
< p_T < 9 GeV/c.Comment: 325 authors, 6 pages text, 4 figures, RevTeX 4. Minor changes to text
and figures to meet PRL length restrictions; no changes to figures;
resubmitted to PRL. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Suppressed pi^0 Production at Large Transverse Momentum in Central Au+Au Collisions at sqrt(s_NN) = 200 GeV
Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c
have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au
collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions
is significantly below the yields measured at the same sqrt(s_NN) in peripheral
Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For
the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and
increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains
constant within errors. The deficit is already apparent in semi-peripheral
reactions and increases smoothly with centrality.Comment: 326 authors, 6 pages text, RevTeX, 3 figures, 2 tables. Submitted to
PRL. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurements of elliptic and triangular flow in high-multiplicity HeAu collisions at GeV
We present the first measurement of elliptic () and triangular ()
flow in high-multiplicity HeAu collisions at
GeV. Two-particle correlations, where the particles have a large separation in
pseudorapidity, are compared in HeAu and in collisions and
indicate that collective effects dominate the second and third Fourier
components for the correlations observed in the HeAu system. The
collective behavior is quantified in terms of elliptic and triangular
anisotropy coefficients measured with respect to their corresponding
event planes. The values are comparable to those previously measured in
Au collisions at the same nucleon-nucleon center-of-mass energy.
Comparison with various theoretical predictions are made, including to models
where the hot spots created by the impact of the three He nucleons on the
Au nucleus expand hydrodynamically to generate the triangular flow. The
agreement of these models with data may indicate the formation of low-viscosity
quark-gluon plasma even in these small collision systems.Comment: 630 authors, 9 pages, 4 figures, 2 tables. v2 is the version accepted
for publication by Physical Review Letters. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Measurement of Single Muons at Forward Rapidity in p+p Collisions at sqrt(s) = 200 GeV and Implications for Charm Production
Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by
the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in
sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After
statistically subtracting contributions from light hadron decays an excess
remains which is attributed to the semileptonic decays of hadrons carrying
heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting
muon spectrum from heavy flavor decays is compared to PYTHIA and a
next-to-leading order perturbative QCD calculation. PYTHIA is used to determine
the charm quark spectrum that would produce the observed muon excess. The
corresponding differential cross section for charm quark production at forward
rapidity is determined to be d\sigma_(c c^bar)/dy|_(y=1.6)=0.243 +/- 0.013
(stat.) +/- 0.105 (data syst.) ^(+0.049)_(-0.087) (PYTHIA syst.) mb.Comment: 329 authors, pages text, 18 figures, tables. Submitted to Physical
Review D. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Azimuthal Angle Correlations for Rapidity Separated Hadron Pairs in d+Au Collisions at sqrt(s_NN) = 200 GeV
We report on two-particle azimuthal angle correlations between charged
hadrons at forward/backward (deuteron/gold going direction) rapidity and
charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p)
collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the
correlations which we quantify in terms of the conditional yield and angular
width of away side partners. The kinematic region studied here samples partons
in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within
this range, we find no x dependence of the jet structure in d+Au collisions.Comment: 330 authors, 6 pages text, 4 figures, no tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter
Azimuthal angle \Delta\phi correlations are presented for charged hadrons
from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200
GeV. With increasing p_T, the away-side distribution evolves from a broad to a
concave shape, then to a convex shape. Comparisons to p+p data suggest that the
away-side can be divided into a partially suppressed "head" region centered at
Delta\phi ~ \pi, and an enhanced "shoulder" region centered at Delta\phi ~ \pi
+/- 1.1. The p_T spectrum for the "head" region softens toward central
collisions, consistent with the onset of jet quenching. The spectral slope for
the "shoulder" region is independent of centrality and trigger p_T, which
offers constraints on energy transport mechanisms and suggests that the
"shoulder" region contains the medium response to energetic jets.Comment: 420 authors from 58 institutions, 6 pages, 4 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
- …