5 research outputs found

    Artificial intelligence and real-world data for drug and food safety - A regulatory science perspective

    Full text link
    In 2013, the Global Coalition for Regulatory Science Research (GCRSR) was established with members from over ten countries (www.gcrsr.net). One of the main objectives of GCRSR is to facilitate communication among global regulators on the rise of new technologies with regulatory applications through the annual conference Global Summit on Regulatory Science (GSRS). The 11th annual GSRS conference (GSRS21) focused on "Regulatory Sciences for Food/Drug Safety with Real-World Data (RWD) and Artificial Intelligence (AI)." The conference discussed current advancements in both AI and RWD approaches with a specific emphasis on how they impact regulatory sciences and how regulatory agencies across the globe are pursuing the adaptation and oversight of these technologies. There were presentations from Brazil, Canada, India, Italy, Japan, Germany, Switzerland, Singapore, the United Kingdom, and the United States. These presentations highlighted how various agencies are moving forward with these technologies by either improving the agencies' operation and/or preparing regulatory mechanisms to approve the products containing these innovations. To increase the content and discussion, the GSRS21 hosted two debate sessions on the question of "Is Regulatory Science Ready for AI?" and a workshop to showcase the analytical data tools that global regulatory agencies have been using and/or plan to apply to regulatory science. Several key topics were highlighted and discussed during the conference, such as the capabilities of AI and RWD to assist regulatory science policies for drug and food safety, the readiness of AI and data science to provide solutions for regulatory science. Discussions highlighted the need for a constant effort to evaluate emerging technologies for fit-for-purpose regulatory applications. The annual GSRS conferences offer a unique platform to facilitate discussion and collaboration across regulatory agencies, modernizing regulatory approaches, and harmonizing efforts

    Consistency of Angular Tuning in the Rat Vibrissa System

    Full text link
    Each region along the rat mystacial vibrissa pathway contains neurons that respond preferentially to vibrissa deflections in a particular direction, a property called angular tuning. Angular tuning is normally defined using responses to deflections of the principal vibrissa, which evokes the largest response magnitude. However, neurons in most brain regions respond to multiple vibrissae and do not necessarily respond to different vibrissae with the same angular tuning. We tested the consistency of angular tuning across the receptive field in several stations along the vibrissa-to-cortex pathway: primary somatosensory (barrel) cortex, ventroposterior medial nucleus of the thalamus (VPM), second somatosensory cortex, and superior colliculus. We found that when averaged across the population, neurons in all of these regions have low (superior colliculus and second somatosensory cortex) or statistically insignificant (barrel cortex and VPM) angular tuning consistencies across vibrissae. Nevertheless, in each region there are a small number of neurons that display consistent angular tuning for at least some vibrissae. We discuss the relevance of these findings for the transformation of inputs along the vibrissa trigeminal pathway and for the detection of sensory cues by whisking animals
    corecore