6 research outputs found

    Single-Cell Growth Probability of Listeria monocytogenes at Suboptimal Temperature, pH, and Water Activity

    Get PDF
    The single-cell growth probability of Listeria monocytogenes was characterized in tryptone soy broth supplemented with 0.6% yeast extract at temperature ranging from 5 to 25°C, pH ranging from 4.4 to 6.5, and water activity ranging from 0.919 to 0.989. Growth was monitored visually in 96-microwell plates and the growth probability was deduced from concentrations estimated with the MPN calculation. Models were proposed to describe the increase of the probability from 0 to 1 with increasing values of environmental factors. An exponential model was used for the temperature and the individual minimal temperature for growth ranged from −3.6°C [−4.5°C, −2.7°C] to 17.3°C [16.0°C, 18.6°C]. An inverse exponential model was convenient for the pH and the minimal pH for growth of individual cells ranged from 4.34 [3.93, 4.75] to 5.93 [4.85, 7.01]. A linear model was used for the water activity and the minimal value for growth of individual cells ranged from 0.917 [0.909, 0.925] to 0.988 [0.966, 1]. In spite of the great between-experiment variability, the minimal values estimated for the growth limits of individual cells were in accordance with values usually proposed for L. monocytogenes populations. This study provides models allowing the prediction of the growth probability of a few cells contaminating chilled foods with suboptimal pH and water activity improving thus the assessment of the behavior of L. monocytogenes cells naturally contaminating foods

    Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases

    No full text
    International audienceThe diagnosis of infectious diseases is entering a new and interesting phase. Technologies based on paper microfluidics, coupled to developments in isothermal amplification of Nucleic Acids (NAs) raise opportunities for bringing the methods of molecular biology in the field, in a low setting environment. A lot of work has been performed in the domain over the last few years and the landscape of contributions is rich and diverse. Most often, the level of sample preparation differs, along with the sample nature, the amplification and detection methods, and the design of the device, among other features. In this review, we attempt to offer a structured description of the state of the art. The domain is not mature and there exist bottlenecks that hamper the realization of Nucleic Acid Amplification Tests (NAATs) complying with the constraints of the field in low and middle income countries. In this domain however, the pace of progress is impressively fast. This review is written for a broad Lab on a Chip audience

    Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics

    No full text
    International audienceThe most performing techniques enabling early diagnosis of infectious diseases rely on nucleic acid detection. Today, because of their high technicality and cost, nucleic acid amplification tests (NAAT) are of benefit only to a small fraction of developing countries population. By reducing costs, simplifying procedures and enabling multiplexing, paper microfluidics has the potential to considerably facilitate their accessibility. However, most of the studies performed in this area have not quit the lab. This letter brings NAAT on paper closer to the field, by using clinical samples and operating in a resource-limited setting. We first performed isothermal reverse transcription and Recombinase Polymerase Amplification (RT-RPA) of synthetic Ribonucleic Acid (RNA) of Ebola virus using paper microfluidics devices. We further applied this method in Guinea to detect the presence of Ebola virus in human sample RNA extracts, with minimal facilities (carry-on detection device and freeze-dried reagents on paper). RT-RPA results were available in few minutes and demonstrate a sensitivity of 90.0% compared to the gold-standard RT-PCR on a set of 43 patient samples. Furthermore, the realization of a nine-spot multilayered device achieving the parallel detection of three distinct RNA sequences opens a route toward the detection of multiple viral strains or pathogens

    Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic

    No full text
    International audienceMonkeypox is an emerging and neglected zoonotic disease whose number of reported cases has been gradually increasing in Central Africa since 1980. This disease is caused by the monkeypox virus (MPXV), which belongs to the genus Orthopoxvirus in the family Poxviridae . Obtaining molecular data is particularly useful for establishing the relationships between the viral strains involved in outbreaks in countries affected by this disease. In this study, we evaluated the use of the MinION real-time sequencer as well as different polishing tools on MinION-sequenced genome for sequencing the MPXV genome originating from a pustular lesion in the context of an epidemic in a remote area of the Central African Republic. The reads corresponding to the MPXV genome were identified using two taxonomic classifiers, Kraken2 and Kaiju. Assembly of these reads led to a complete sequence of 196,956 bases, which is 6322 bases longer than the sequence previously obtained with Illumina sequencing from the same sample. The comparison of the two sequences showed mainly indels at the homopolymeric regions. However, the combined use of Canu with specific polishing tools such as Medaka and Homopolish was the best combination that reduced their numbers without adding mismatches. Although MinION sequencing is known to introduce a number of characteristic errors compared to Illumina sequencing, the new polishing tools allow a better-quality MinION-sequenced genome, thus to be used to help determine strain origin through phylogenetic analysis

    First detection and genome sequencing of SARS‐CoV‐2 in an infected cat in France

    No full text
    International audienceAfter its first description in Wuhan (China), SARS-CoV-2 the agent of coronavirus disease 2019 (COVID-19) rapidly spread worldwide. Previous studies suggested that pets could be susceptible to SARS-CoV-2. Here, we investigated the putative infection by SARS-CoV-2 in 22 cats and 11 dogs from owners previously infected or suspected of being infected by SARS-CoV-2. For each animal, rectal, nasopharyngeal swabs and serum were taken. Swabs were submitted to RT-qPCR assays targeting 2 genes of SARS-CoV-2. All dogs were tested SARS-CoV-2 negative. One cat was tested positive by RT-qPCR on rectal swab. Nasopharyngeal swabs from this animal were tested negative. This cat showed mild respiratory and digestive signs. Serological analysis confirms the presence of antibodies against the SARS-CoV-2 in both serum samples taken 10 days apart. Genome sequence analysis revealed that the cat SARS-CoV-2 belongs to the phylogenetic clade A2a like most of the French human SARS-CoV-2. This study reports for the first time the natural infection of a cat in France (near Paris) probably through their owners. There is currently no evidence that cats can spread COVID-19 and owners should not abandon their pets or compromise their welfare

    Whole genome sequencing and phylogenetic analysis of six SARS-CoV-2 strains isolated during COVID-19 pandemic in Tunisia, North Africa

    No full text
    International audienceBackground: In Tunisia a first SARS-CoV-2 confirmed case was reported in March 03, 2020. Since then, an increase of cases number was observed from either imported or local cases. The aim of this preliminary study was to better understand the molecular epidemiology and genetic variability of SARS-CoV-2 viruses circulating in Tunisia and worldwide. Methods: Whole genome sequencing was performed using NGS approach on six SARS. CoV-2 highly positive samples detected during the early phase of the outbreak. Results: Full genomes sequences of six Tunisian SARS-CoV-2 strains were obtained from imported and locally transmission cases during the COVID-19 outbreak. Reported sequences were non-identical with 0.1% nucleotide divergence rate and clustered into 6 different clades with worldwide sequences. SNPs results favor the distribution of the reported Tunisian sequences into 3 major genotypes. These SNP mutations are critical for diagnosis and vaccine development. Conclusions: These results indicate multiple introductions of the virus in Tunisia and add new genomic data on SARS-CoV-2 at the international level
    corecore