36 research outputs found
Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana
AbstractReliable national data on waste generation and composition that will inform effective planning on waste management in Ghana is absent. To help obtain this data on a regional basis, selected households in each region were recruited to obtain data on rate of waste generation, physical composition of waste, sorting and separation efficiency and per capita of waste. Results show that rate of waste generation in Ghana was 0.47kg/person/day, which translates into about 12,710tons of waste per day per the current population of 27,043,093. Nationally, biodegradable waste (organics and papers) was 0.318kg/person/day and non-biodegradable or recyclables (metals, glass, textiles, leather and rubbers) was 0.096kg/person/day. Inert and miscellaneous waste was 0.055kg/person/day. The average household waste generation rate among the metropolitan cities, except Tamale, was high, 0.72kg/person/day. Metropolises generated higher waste (average 0.63kg/person/day) than the municipalities (0.40kg/person/day) and the least in the districts (0.28kg/person/day) which are less developed. The waste generation rate also varied across geographical locations, the coastal and forest zones generated higher waste than the northern savanna zone. Waste composition was 61% organics, 14% plastics, 6% inert, 5% miscellaneous, 5% paper, 3% metals, 3% glass, 1% leather and rubber, and 1% textiles. However, organics and plastics, the two major fractions of the household waste varied considerably across the geographical areas. In the coastal zone, the organic waste fraction was highest but decreased through the forest zone towards the northern savanna. However, through the same zones towards the north, plastic waste rather increased in percentage fraction. Households did separate their waste effectively averaging 80%. However, in terms of separating into the bin marked biodegradables, 84% effectiveness was obtained whiles 76% effectiveness for sorting into the bin labeled other waste was achieved
Prevalence and characterization of Salmonella among humans in Ghana
BACKGROUND: Non-typhoidal Salmonella (NTS) is a public health problem worldwide and particularly in Africa with high disease burden. This study characterized Salmonella isolates from humans in Ghana to determine serovar distribution, phage types, and antimicrobial resistance. Further, the clonal relatedness among isolates was determined. METHODS: One hundred and thirty-seven Salmonella isolates (111 clinical and 26 public toilet) were characterized using standard serotyping, phage typing, and antimicrobial susceptibility testing methods. The molecular epidemiology of common serovars (Salmonella Typhimurium and Salmonella Enteritidis) was established by pulsed field gel electrophoresis (PFGE). RESULTS: Twenty-two serovars were identified with S. Enteritidis, S. Typhimurium, and Salmonella Derby as the most dominant. One hundred and twelve isolates showed resistance to more than one antimicrobial. Fifty-eight (n = 58/112; 54.5%) strains were multi-resistant with low resistance to cephalosporins ceftazidime (8.0%), cefotaxime (4.5%), and cefoxitin (2.7%) with synergy to clavulanic acid indicating possible ESBLs. Isolates showed high resistance to trimethoprim (66.1%), tetracycline (61.6%), ampicillin (57.1%), sulfamethoxazole (46.4%), chloramphenicol (33.9%), and ciprofloxacin (25.0%). The most common resistance pattern of multi-resistant serovars was to ampicillin, chloramphenicol, sulphonamide, and trimethoprim. S. Enteritidis (18/43) strains reacted with typing phages but did not conform to any phage type with PT14B and PT4 as predominant definitive phage types. Six S. Typhimurium strains reacted but did not conform to any recognized phage type while seven were non-typable. The predominant definitive phage types were DT1 and DT22. PFGE patterns of human S. Enteritidis were closely related to patterns of poultry isolates obtained in a previous study in Ghana. CONCLUSIONS: Cephalosporin resistance is uncommon among Salmonella from humans in Ghana. Poultry may be an important source of human salmonellosis. There is an urgent need for the implementation of routine surveillance of antimicrobial use and bacterial resistance among humans in Ghana
Estimating malaria transmission risk through surveillance of human–vector interactions in northern Ghana
Background:
Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector–human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed.
Methods:
Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations.
Results:
Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = −0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = −4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation).
Conclusion:
Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission
Widespread exposure to infectious bronchitis virus and Mycoplasma gallisepticum in chickens in the Ga-East district of Accra, Ghana
Infectious bronchitis, a major challenge to the global poultry industry, is an acute and highly contagious disease of the respiratory and urogenital tract of chickens which causes significant economic losses to poultry producers. In addition, Mycoplasma gallisepticum (MG) is another respiratory pathogen that remains a concern to producers. This study investigated the sero-prevalence of IBV and MG in commercial chickens in Ga-East district of the Greater Accra Region, Ghana, using sera obtained from 440 broiler and layer chickens showing no signs of disease. IBV and MG specific antibodies were determined using commercial ELISA kits. Majority (85%) of the samples tested positive for at least one of the 2 pathogens investigated, with 30% testing positive for both. Overall sero-prevalence of IBV and MG were 85.5 and 29.5% respectively suggesting a higher IBV than MG field challenge in the study area. IBV prevalence was significantly higher in layers (100%) than broilers (42%). Age of bird had a significant influence on IBV prevalence among broilers. The MG prevalence in layers and broilers were 39.4 and 0% respectively. This data supports the need to institute control measures to mitigate IBV associated losses and improve poultry production in Ghana
Antibiotic Resistance of Campylobacter Recovered from Faeces and Carcasses of Healthy Livestock
Campylobacter is of major significance in food safety and human and veterinary medicine. This study highlighted resistance situation in the area of veterinary public health in Ghana. Using selective mCCDA agar, isolates were confirmed phenotypically on API CAMPY and genotypically by multiplex PCR of IpxA gene. The susceptibility profile of species to common and relevant antibiotics was determined by the Kirby-Bauer disk diffusion method. Cattle, sheep, goat, and pig faecal samples analysed, respectively, yielded 13.2% (16/121), 18.6% (22/102), 18.5% (25/135), and 28.7% (29/101) Campylobacter species while 34.5% (38/110), 35.9% (42/117), 23.9% (32/134), and 36.3% (37/102) were, respectively, recovered from the carcasses. Species identified in faeces were C. jejuni 35.8% (33/92), C. jejuni subsp. doylei 4.3% (4/92), C. coli 47.8% (44/92), and C. lari 12.0% (11/92). Species discovered in carcasses were C. jejuni 83.9% (125/149), C. jejuni subsp. doylei 2.0% (3/149), C. coli 6.0% (9/149), and C. lari 8.1% (12/149). Resistance ranged from 92 to 97% to the β-lactams, 7 to 69% to the quinolones, 0 to 44% to the aminoglycosides, 97 to 100% to erythromycin, 48 to 94% to tetracycline, 45 to 88% to chloramphenicol, and 42 to 86% to trimethoprim/sulfamethoxazole as 0% resistance was observed against imipenem
Caenorhabditis elegans, a pluricellular model organism to screen new genes involved in mitochondrial genome maintenance
International audienceThe inheritance of functional mitochondria depends on faithful replication and transmission of mitochondrial DNA (mtDNA). A large and heterogeneous group of human disorders is associated with mitochondrial genome quantitative and qualitative anomalies. Several nuclear genes have been shown to account for these severe OXPHOS disorders. However, in several cases the disease-causing mutations still remain unknown
Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana
Globally, resistance to antimicrobial drugs in food animals is on the rise. Escherichia coli of livestock, though commensal in nature, serves as reservoir for antimicrobial resistance genes with the potential of disseminating them. This study sought to examine the antimicrobial resistance profiles of Escherichia coli in broilers, pigs, and cattle in the Kumasi Metropolis and undertake molecular characterisation of the resistances. Faecal E. coli isolates (n = 48) were obtained from 10 broiler farms, (n = 43) from 15 pig farms, and (n = 42) from cattle from the Kumasi Abattoir using standard bacteriological techniques. The Kirby–Bauer disc diffusion method was employed in testing the sensitivities of 133 E. coli isolates to 15 antimicrobials. All 48 isolates from broilers presented no resistance to amoxicillin/clavulanic acid and ceftiofur. A 100% resistance to meropenem was observed in pig and cattle isolates. Multidrug resistance (MDR) across animal groups was 95.8% (n = 46), 95.3% (n = 41), and 64.3% (n = 27) for broilers, pigs, and cattle, respectively. Twenty-eight isolates presenting phenotypic resistance to aminopenicillins and cephalosporins were screened for the presence of extended-spectrum beta-lactamase (ESBL) genes by PCR. One isolate from poultry and another from cattle tested positive for the blaCTX-M ESBL gene. There were no positives for the blaTEM and blaSHV ESBL genes. Commensal E. coli of food animal origin represents an important reservoir of antimicrobial resistance that transfers resistance to pathogenic and nonpathogenic microbes affecting humans and animals. There is an urgent need to institute routine surveillance for the establishment of the mechanisms and molecular orientation of resistance in these organisms