8 research outputs found

    Effect of a high surface-to-volume ratio on fluorescence-based assays

    Get PDF
    In the work discussed in this paper, the effect of a high surface-to-volume ratio of a microfluidic detection cell on fluorescence quenching was studied. It was found that modification of the geometry of a microchannel can provide a wider linear range. This is a phenomenon which should be taken into consideration when microfluidic systems with fluorescence detection are developed. The dependence of the linear range for fluorescein on the surface-to-volume ratio was determined. Both fluorescence inner-filter effects and concentration self-quenching were taken into consideration. It was found that inner-filter effects have little effect on the extent of the linear range on the microscale. [Figure: see text

    An Enzymatic Microreactor Based on Chaotic Micromixing for Enhanced Amperometric Detection in a Continuous Glucose Monitoring Application

    No full text
    The development of continuous glucose monitoring systems is a major trend in diabetes-related research. Small, easy-to-wear systems which are robust enough to function over many days without maintenance are the goal. We present a new sensing system for continuous glucose monitoring based on a microreactor incorporating chaotic mixing channels. Two different types of chaotic mixing channels with arrays of either slanted or herringbone grooves were fabricated in poly(dimethylsiloxane) (PDMS) and compared to channels containing no grooves. Mixing in channels with slanted grooves was characterized using a fluorescence method as a function of distance and at different flow rates, and compared to the mixing behavior observed in channels with no grooves. For electrochemical detection, a thin-film Pt electrode was positioned at the end of the fluidic channel as an on-chip detector of the reaction product, H(2)O(2). Glucose determination was performed by rapidly mixing glucose and glucose oxidase (GOx) in solution at a flow rate of 0.5 mu L/min and 1.5 mu L/min, respectively. A 150 U/mt, GOx solution was selected as the optimum concentration of enzyme. In order to investigate the dependence of device response on flow rate, experiments with a premixed solution of glucose and GOx were compared to experiments in which glucose and GOx were reacted on-chip. Calibration curves for glucose (0-20 mM, in the clinical range of interest) were obtained in channels with and without grooves, using amperometric detection and a 150 U/mL GOx solution for in-chip reaction
    corecore