6 research outputs found

    Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism

    Get PDF
    Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis‐associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed‐growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance

    Relocation of chloroplast proteins from cytosols into chloroplasts

    No full text
    The chloroplasts in terrestrial plants play a functional role as a major sensor for perceiving physiological changes under normal and stressful conditions. Despite the fact that the plant chloroplast genome encodes around 120 genes, which are mainly essential for photosynthesis and chloroplast biogenesis, the functional roles of the genes remain to be determined in plant’s response to environmental stresses. Photosynthetic electron transfer D (PETD) is a key component of the chloroplast cytochrome b6f complex. Chloroplast ndhA (NADH dehydrogenase A) and ndhB (NADH dehydrogenase B) interact with photosystem I (PSI), forming NDH-PSI supercomplex. Notably, artificial targeting of chloroplasts-encoded proteins, PETD, NDHA, or NDHB, was successfully relocated from cytosols into chloroplasts. The result suggests that artificial targeting of proteins to chloroplasts is potentially open to the possibility of chloroplast biotechnology in engineering of plant tolerance against biotic and abiotic stresses

    Roles of Organellar RNA-Binding Proteins in Plant Growth, Development, and Abiotic Stress Responses

    No full text
    Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants

    Comprehensive Understanding of Selecting Traits for Heat Tolerance during Vegetative and Reproductive Growth Stages in Tomato

    No full text
    Climate change is an important emerging issue worldwide; the surface temperature of the earth is anticipated to increase by 0.3 °C in every decade. This elevated temperature causes an adverse impact of heat stress (HS) on vegetable crops; this has been considered as a crucial limiting factor for global food security as well as crop production. In tomato plants, HS also causes changes in physiological, morphological, biochemical, and molecular responses during all vegetative and reproductive growth stages, resulting in poor fruit quality and low yield. Thus, to select genotypes and develop tomato cultivars with heat tolerance, feasible and reliable screening strategies are required that can be adopted in breeding programs in both open-field and greenhouse conditions. In this review, we discuss previous and recent studies describing attempts to screen heat-tolerant tomato genotypes under HS that have adopted different HS regimes and threshold temperatures, and the association of heat tolerance with physiological and biochemical traits during vegetative and reproductive growth stages. In addition, we examined the wide variety of parameters to evaluate the tomato’s tolerance to HS, including vegetative growth, such as leaf growth parameters, plant height and stem, as well as reproductive growth in terms of flower number, fruit set and yield, and pollen and ovule development, thereby proposing strategies for the development of heat-tolerant tomato cultivars in response to high temperature

    QTL Mapping of Resistance to Bacterial Wilt in Pepper Plants (<i>Capsicum annuum</i>) Using Genotyping-by-Sequencing (GBS)

    No full text
    Bacterial wilt (BW) disease, which is caused by Ralstonia solanacearum, is one globally prevalent plant disease leading to significant losses of crop production and yield with the involvement of a diverse variety of monocot and dicot host plants. In particular, the BW of the soil-borne disease seriously influences solanaceous crops, including peppers (sweet and chili peppers), paprika, tomatoes, potatoes, and eggplants. Recent studies have explored genetic regions that are associated with BW resistance for pepper crops. However, owing to the complexity of BW resistance, the identification of the genomic regions controlling BW resistance is poorly understood and still remains to be unraveled in the pepper cultivars. In this study, we performed the quantitative trait loci (QTL) analysis to identify genomic loci and alleles, which play a critical role in the resistance to BW in pepper plants. The disease symptoms and resistance levels for BW were assessed by inoculation with R. solanacearum. Genotyping-by-sequencing (GBS) was utilized in 94 F2 segregating populations originated from a cross between a resistant line, KC352, and a susceptible line, 14F6002-14. A total of 628,437 single-nucleotide polymorphism (SNP) was obtained, and a pepper genetic linkage map was constructed with putative 1550 SNP markers via the filtering criteria. The linkage map exhibited 16 linkage groups (LG) with a total linkage distance of 828.449 cM. Notably, QTL analysis with CIM (composite interval mapping) method uncovered pBWR-1 QTL underlying on chromosome 01 and explained 20.13 to 25.16% by R2 (proportion of explained phenotyphic variance by the QTL) values. These results will be valuable for developing SNP markers associated with BW-resistant QTLs as well as for developing elite BW-resistant cultivars in pepper breeding programs
    corecore