32 research outputs found

    A systematic review and meta-analysis of the global prevalence and relationships among Burkholderia pseudomallei sequence types isolated from humans, animals, and the environment

    Get PDF
    Background and Aim: Burkholderia pseudomallei, a highly pathogenic bacterium responsible for melioidosis, exhibits ecological ubiquity and thrives within soil and water reservoirs, posing significant infection risks to humans and animals through direct contact. The aim of this study was to elucidate the genetic diversity and prevalence patterns of B. pseudomallei sequence types (STs) across a global spectrum and to understand the relationships between strains isolated from different sources. Materials and Methods: We performed a systematic review and meta-analysis in this study. Extensive research was carried out across three comprehensive databases, including PubMed, Scopus, and ScienceDirect with data collected from 1924 to 2023. Results: A total of 40 carefully selected articles contributed 2737 B. pseudomallei isolates attributed to 729 distinct STs and were incorporated into the systematic review. Among these, ST46 emerged as the most prominent, featuring in 35% of the articles and demonstrating a dominant prevalence, particularly within Southeast Asia. Moreover, ST51 consistently appeared across human, animal, and environmental studies. Subsequently, we performed a meta-analysis, focusing on nine specific STs: ST46, ST51, ST54, ST70, ST84, ST109, ST289, ST325, and ST376. Surprisingly, no statistically significant differences in their pooled prevalence proportions were observed across these compartments for ST46, ST70, ST289, ST325, and ST376 (all p > 0.69). Conversely, the remaining STs, including ST51, ST54, ST84, and ST109, displayed notable variations in their prevalence among the three domains (all p < 0.04). Notably, the pooled prevalence of ST51 in animals and environmental samples surpassed that found in human isolates (p < 0.01). Conclusion: To the best of our knowledge, this study is the first systematic review and meta-analysis to investigate the intricate relationships between STs and their sources and contributes significantly to our understanding of B. pseudomallei diversity within the One Health framework

    Phenolic Profile of Nipa Palm Vinegar and Evaluation of Its Antilipidemic Activities

    No full text
    Obesity and overweight are strongly associated with dyslipidemia which can promote the development of cardiovascular diseases. Recently, natural products have been suggested as alternative compounds for antioxidant and antilipidemic activity. The objective of this study was to determine the phenolic compounds and assess the inhibitory activities on pancreatic lipase, cholesterol esterase, and cholesterol micellization of nipa palm vinegar (NPV). Total phenolic content was assessed and phenolic compounds were determined using the Folin–Ciocalteu assay and liquid chromatography-mass spectrometry (LC-MS), respectively. Pancreatic lipase and cholesterol esterase inhibitory activities of the NPV were measured using enzymatic colorimetric assays. The formation of cholesterol micelles was assessed using a cholesterol assay kit. The phenolic content of NPV was 167.10 ± 10.15 µg GAE/mL, and LC-MS analyses indicated the presence of gallic acid, isoquercetin, quercetin, catechin, and rutin as bioactive compounds. Additionally, the NPV inhibited pancreatic lipase and cholesterol esterase activities in a concentration-dependent manner. Moreover, the NPV also suppressed the formation of cholesterol micellization. These results suggest that phenolic compounds, especially gallic acid, isoquercetin, quercetin, catechin, and rutin, from NPV may be the main active compounds with possible cholesterol-lowering effects through inhibition of pancreatic lipase and cholesterol esterase activities as well as the inhibition of solubility of cholesterol micelles. Therefore, NPV may delay postprandial dyslipidemia, and it could be used as a natural source of bioactive compounds with antilipidemic activity. However, NPV should be extensively evaluated by animal and clinical human studies

    Antioxidant and anti-inflammatory activities of durian (Durio zibethinus Murr.) pulp, seed and peel flour

    No full text
    The unripe pulp, inner peel and seed of durian were used in this study. These are generally not considered edible and must be disposed of as waste. However, they are good sources of bioactive compounds. Flour extracts from the unripe pulp, inner peel, and seed of two durian (Durio zibethinus Murr.) varieties, namely, Monthong and Chanee, were analyzed chemically to determine their total phenolic content (TPC), antioxidant, and anti-inflammatory capacities. Chanee pulp (CPu) contained a higher TPC (5285.37 ± 517.65 mg GAE/g) than Monthong pulp (MPu), Monthong peel (MP), Monthong seed (MS), Chanee peel (CP) and Chanee seed (CS) (p = 0.0027, 0.0042, 0.0229, 0.0069 and 0.36), respectively. The antioxidant activity of each durian extract was determined against ABTS, nitric oxide, superoxide, hydroxyl, and metal ions. The results indicated that the pulp, inner peel and seed of these durian varieties had antioxidant capacities. Murine Raw 264.7 macrophages were used to determine the cytotoxicity of the flour extracts. The extract of CS flour had the lowest cytotoxicity followed by MP, CPu, CP, MPu and MS (p = 0.5926, 0.44, 0.3191, 0.1471 and 0.0014), respectively. The anti-inflammatory activity was tested by anti-nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells by co-treating the Raw 264.7 cells with each durian flour extract and LPS. The extract of MP flour had the lowest IC50 against NO production, indicating the highest anti-NO production activity followed by CS, CPu, MPu, CP and MS (p = 0.7473, 0.0104, < 0.0001, 0.0002 and < 0.0001, respectively). The information obtained in this study is useful for researchers to explore more durian varieties in Southeast Asia to find bioactive compounds that might be novel nutraceuticals for antioxidant, anti-inflammation and therapeutic functional food

    Spray-Dried Nipa Palm Vinegar Powder: Production and Evaluation of Physicochemical, Nutritional, Sensory, and Storage Aspects

    No full text
    Nipa palm vinegar (NPV) is a naturally fermented vinegar derived from the nipa palm (Nypa fruticans Wurmb) sap. This work optimized production of spray-dried nipa palm vinegar powder. The influence of the various drier air inlet temperatures (150, 170, and 190 °C) and maltodextrin DE10 carrier concentrations (15 and 20% w/v) in the feed, on the characteristics of the product powder was investigated. Nipa palm vinegar powder (NPVp) was evaluated in terms of the following responses: physicochemical and nutritional properties, sensory acceptability, and storage stability. All processing variables affected the responses. Based on product desirability as the optimization criterion, spray-drying with a hot air inlet temperature of 170 °C with a 15% w/v maltodextrin DE10 in the feed was optimal. The nutritional characteristics of the product made under the above identified optimal conditions were (per 100 g dry product): a calorific value of 366.2 kcal; 1.3 g protein; 88.1 g carbohydrate; 0.96 g fat; 883.9 mg potassium; 12.7 mg vitamin C; and 105 mg gallic acid equivalent (GAE) phenolics content. The product, vacuum-packed and heat-sealed in aluminum laminated polyethylene bags, could be stored at 25 °C for at least 180 days without noticeable loss in quality

    Spray-Dried Nipa Palm Vinegar Powder: Production and Evaluation of Physicochemical, Nutritional, Sensory, and Storage Aspects

    No full text
    Nipa palm vinegar (NPV) is a naturally fermented vinegar derived from the nipa palm (Nypa fruticans Wurmb) sap. This work optimized production of spray-dried nipa palm vinegar powder. The influence of the various drier air inlet temperatures (150, 170, and 190 &deg;C) and maltodextrin DE10 carrier concentrations (15 and 20% w/v) in the feed, on the characteristics of the product powder was investigated. Nipa palm vinegar powder (NPVp) was evaluated in terms of the following responses: physicochemical and nutritional properties, sensory acceptability, and storage stability. All processing variables affected the responses. Based on product desirability as the optimization criterion, spray-drying with a hot air inlet temperature of 170 &deg;C with a 15% w/v maltodextrin DE10 in the feed was optimal. The nutritional characteristics of the product made under the above identified optimal conditions were (per 100 g dry product): a calorific value of 366.2 kcal; 1.3 g protein; 88.1 g carbohydrate; 0.96 g fat; 883.9 mg potassium; 12.7 mg vitamin C; and 105 mg gallic acid equivalent (GAE) phenolics content. The product, vacuum-packed and heat-sealed in aluminum laminated polyethylene bags, could be stored at 25 &deg;C for at least 180 days without noticeable loss in quality

    Hematological Indices of Pesticide Exposure Rice Farmers in Southern Thailand

    Get PDF
    The most common pesticides used in rice farming are organophosphates and carbamates. These pesticides inhibit acetylcholinesterase (AChE) activity, resulting in excessive levels of acetylcholine accumulation and disrupted neurotransmission. This study compared AChE activity and hematological parameters between pesticide-using rice farmers, non-pesticide using rice farmers, and non-agricultural occupational groups (non-farmers). Pesticide residues that accumulated in rice and the water and soil of the study area were also determined. AChE activity of all participants showed 10 from 87 samples (11.49%) as borderline depressed, with 50% of these being pesticide-using farmers. Most of the hematological parameters were normal in all samples. However, platelet numbers of pesticide self-spraying rice farmers were significantly lower than non-self-spraying rice farmers. The results suggested that the use of pesticides during rice farming affected AChE activity and some hematological cells. In addition, pesticide residues in soil, water and rice in rice fields using pesticides were higher than in non-pesticide use areas. Results confirmed that the exposure rates of farmers using pesticides were at higher risk than farmers who did not use pesticide

    A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (<i>Garcinia mangostana</i> L.) Pericarps

    No full text
    Xanthones are significant bioactive compounds and secondary metabolites in mangosteen pericarps. A xanthone is a phenolic compound and versatile scaffold that consists of a tricyclic xanthene-9-one structure. A xanthone may exist in glycosides, aglycones, monomers or polymers. It is well known that xanthones possess a multitude of beneficial properties, including antioxidant activity, anti-inflammatory activity, and antimicrobial properties. Additionally, xanthones can be used as raw material and/or an ingredient in many food, pharmaceutical, and cosmetic applications. Although xanthones can be used in various therapeutic and functional applications, their properties and stability are determined by their extraction procedures. Extracting high-quality xanthones from mangosteen with effective therapeutic effects could be challenging if the extraction method is insufficient. Although several extraction processes are in use today, their efficiency has not yet been rigorously evaluated. Therefore, selecting an appropriate extraction procedure is imperative to recover substantial yields of xanthones with enhanced functionality from mangosteens. Hence, the present review will assist in establishing a precise scenario for finding the most appropriate extraction method for xanthones from mangosteen pericarp by critically analyzing various conventional and unconventional extraction methods and their ability to preserve the stability and biological effects of xanthones

    Use of Recombinant Escherichia coli Strains in Immunofluorescence Assays for Melioidosis Diagnosis

    No full text
    Burkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis in humans and animals in the tropics. The clinical manifestations of melioidosis are diverse, ranging from localized infections to whole-body sepsis. The effective serological method is crucial for the point-of-care diagnosis of melioidosis. The aim of this study was to develop indirect immunofluorescence assay (IFA)-based methods for detecting immunoglobulin G (IgG) antibodies in melioidosis patients. These methods use whole-cell antigens made from recombinant E. coli strains that express major B. pseudomallei antigens, including TssM, OmpH, AhpC, BimA, and Hcp1. A total of 271 serum samples from culture-confirmed melioidosis patients (n = 81), patients with other known infections (n = 70), and healthy donors (n = 120) were tested. Our study showed that the recombinant TssM strain had the highest performance, with 92.6% sensitivity, 100% specificity, 100% positive predictive value, 96.9% negative predictive value, 97.8% efficiency, 97.0% accuracy, and no cross-reactivity. The method agreement analysis based on k efficiency calculations showed that all five IFA methods perfectly agreed with the standard culturing method, while the traditional indirect hemagglutination (IHA) method moderately agreed with the culture. In summary, our investigations showed that the TssM-IFA method could be used for melioidosis diagnosis

    Antioxidant activity, anti-tyrosinase activity, molecular docking studies, and molecular dynamic simulation of active compounds found in nipa palm vinegar

    No full text
    Tyrosinase is a key enzyme in melanogenesis and its inhibitors have become increasingly because of their potential activity as hypopigmenting agents which have less side effects. Nipa palm vinegar is an aqueous product that is normally used as a food supplement. The aim of this study was to study the determination of antioxidant activity and tyrosinase inhibitory activities of aqueous extract of original nipa palm vinegar (AE O-NPV), nipa palm vinegar powder (NPV-P) and aqueous extract of nipa palm vinegar powder (AE NPV-P) were examined. Nipa palm vinegars were evaluated the phenolic and flavonoid content, and the active compounds which were submitted to molecular docking and molecular dynamic simulation, chemoinformatics, rule of five, skin absorption and toxicity. The highest phenolic and flavonoid contents in the AE O-NPV were 2.36 ± 0.23 mg gallic acid equivalents/g extract and 5.11 ± 0.59 mg quercetin equivalents/g, and the highest ABTS radical cation scavenging activity was also found. The AE O-NPV, NPV-P and AE NPV-P showed anti-mushroom tyrosinase activity. The HPLC analysis showed that there were vanillic acid and three flavonoids (catechin, rutin and quercetin). The molecular docking study revealed that the binding of the vanillic acid and three flavonoids occurred in the active site residues (histidine and other amino acids). Moreover, the number of hydrogen bond acceptors/donors, solubility, polar surface area and bioavailability score of the vanillic acid and three flavonoids were acceptable compared to Lipinski’s Rule of Five. The molecular dynamic simulation showed that vanillic acid interacts with HIS284 through π–π stacking hydrophobic interactions and forms a metal-acceptor interaction with the copper molecule at the tyrosinase active site. All compounds revealed good skin permeability and nontoxicity. Nipa palm vinegar could be a promising source of a new ingredient for tyrosinase inhibition for cosmetics or pharmaceutical products
    corecore