2,873 research outputs found

    Signatures of the neutrino mass hierarchy in supernova neutrinos

    Full text link
    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed.Comment: 15 pages, 9 figure

    Direct solar-pumped iodine laser amplifier

    Get PDF
    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser

    Direct solar-pumped iodine laser amplifier

    Get PDF
    The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser

    Direct solar-pumped iodine laser amplifier

    Get PDF
    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain

    ESL Based Cylindrical Shell Elements with Hierarchical Shape Functions for Laminated Composite Shells

    Get PDF
    We introduce higher-order cylindrical shell element based on ESL (equivalent single-layer) theory for the analysis of laminated composite shells. The proposed elements are formulated by the dimensional reduction technique from three-dimensional solid to two-dimensional cylindrical surface with plane stress assumption. It allows the first-order shear deformation and considers anisotropic materials due to fiber orientation. The element displacement approximation is established by the integrals of Legendre polynomials with hierarchical concept to ensure the C0-continuity at the interface between adjacent elements as well as C1-continuity at the interface between adjacent layers. For geometry mapping, cylindrical coordinate is adopted to implement the exact mapping of curved shell configuration with a constant curvature with respect to any direction in the plane. The verification and characteristics of the proposed element are investigated through the analyses of three cylindrical shell problems with different shapes, loadings, and boundary conditions

    Comparative study of INPIStron and spark gap

    Get PDF
    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron

    CLIC4, an Intracellular Chloride Channel Protein, Is a Novel Molecular Target for Cancer Therapy

    Get PDF
    Chloride intracellular channel (CLIC)4 is a p53- and tumor necrosis factor α (TNFα)-regulated chloride channel protein that is localized to the mitochondria and cytoplasm of mouse and human keratinocytes. CLIC4 protein increases in differentiating keratinocytes and in keratinocytes exposed to DNA-damaging agents and metabolic inhibitors. Increasing CLIC4 levels by transduction of recombinant CLIC4 causes apoptosis. CLIC4 translocates to the nucleus under a variety of conditions of cell stress, and nuclear CLIC4 is associated with cell cycle arrest and accelerated apoptosis. Reduction of CLIC4 and several other CLIC family members by expressing a doxycycline-regulated CLIC4 antisense also causes apoptosis in squamous cancer cell lines. Expressing antisense CLIC4 in tumors derived from transplanting these cells into nude mice inhibits tumor growth, increases tumor apoptosis, and reduces tumor cell proliferation. Co-administration of TNFα intraperitoneally enhances the tumor-inhibitory influence of CLIC4 antisense expression. Together, these results suggest that CLIC4 is important for keratinocyte viability and may be a novel target for anti-cancer therapy

    Epistasis between 5-HTTLPR and ADRA2B polymorphisms influences attentional bias for emotional information in healthy volunteers

    Get PDF
    Individual differences in emotional processing are likely to contribute to vulnerability and resilience to emotional disorders such as depression and anxiety. Genetic variation is known to contribute to these differences but they remain incompletely understood. The serotonin transporter (5-HTTLPR) and alpha(2B)-adrenergic autoreceptor (ADRA2B) insertion/deletion polymorphisms impact on two separate but interacting monaminergic signalling mechanisms that have been implicated in both emotional processing and emotional disorders. Recent studies suggest that the 5-HTTLPR s allele is associated with a negative attentional bias and an increased risk of emotional disorders. However, such complex behavioural traits are likely to exhibit polygenicity, including epistasis. This study examined the contribution of the 5-HTTLPR and ADRA2B insertion/deletion polymorphisms to attentional biases for aversive information in 94 healthy male volunteers and found evidence of a significant epistatic effect (p < 0.001). Specifically, in the presence of the 5-HTTLPR s allele, the attentional bias for aversive information was attenuated by possession of the ADRA2B deletion variant whereas in the absence of the s allele, the bias was enhanced. These data identify a cognitive mechanism linking genotype-dependent serotonergic and noradrenergic signalling that is likely to have implications for the development of cognitive markers for depression/anxiety as well as therapeutic drug effects and personalized approaches to treatment

    Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting

    Full text link
    The smart metering infrastructure has changed how electricity is measured in both residential and industrial application. The large amount of data collected by smart meter per day provides a huge potential for analytics to support the operation of a smart grid, an example of which is energy demand forecasting. Short term energy forecasting can be used by utilities to assess if any forecasted peak energy demand would have an adverse effect on the power system transmission and distribution infrastructure. It can also help in load scheduling and demand side management. Many techniques have been proposed to forecast time series including Support Vector Machine, Artificial Neural Network and Deep Learning. In this work we use Long Short Term Memory architecture to forecast 3-day ahead energy demand across each month in the year. The results show that 3-day ahead demand can be accurately forecasted with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper proposes way to quantify the time as a feature to be used in the training phase which is shown to affect the network performance

    Characteristics of switching plasma in an inverse-pinch switch

    Get PDF
    Characteristics of the plasma that switches on tens of giga volt-ampere in an inverse-pinch plasma switch (INPIStron) have been made. Through optical and spectroscopic diagnostics of the current carrying plasma, the current density, the motion of current paths, dominant ionic species have been determined in order to access their effects on circuit parameters and material erosion. Also the optimum operational condition of the plasma-puff triggering method required for azimuthally uniform conduction in the INPIStron has been determined
    corecore