145 research outputs found

    Oral Vaccination of Baculovirus-Expressed VP28 Displays Enhanced Protection against White Spot Syndrome Virus in Penaeus monodon

    Get PDF
    White Spot Syndrome Virus (WSSV) is an infectious pathogen of shrimp and other crustaceans, and neither effective vaccines nor adequate treatments are currently available. WSSV is an enveloped dsDNA virus, and one of its major envelope proteins, VP28, plays a pivotal role in WSSV infection. In an attempt to develop a vaccine against WSSV, we inserted the VP28 gene into a baculovirus vector tailored to express VP28 on the baculovirus surface under the WSSV ie1 promoter (Bac-VP28). The Bac-VP28 incorporated abundant quantity (65.3 µg/ml) of VP28. Shrimp were treated by oral and immersion vaccination with either Bac-VP28 or wild-type baculovirus (Bac-wt). The treatment was followed by challenge with WSSV after 3 and 15 days. Bac-VP28 vaccinated shrimp showed significantly higher survival rates (oral: 81.7% and 76.7%; immersion: 75% and 68.4%) than Bac-wt or non-treated shrimp (100% mortality). To verify the protective effects of Bac-VP28, we examined in vivo expression of VP28 by immunohistochemistry and quantified the WSSV copy number by qPCR. In addition to that, we quantified the expression levels shrimp genes LGBP and STAT by real-time RT-PCR from the samples obtained from Bac-VP28 vaccinated shrimp at different duration of vaccine regime. Our findings indicate that oral vaccination of shrimp with Bac-VP28 is an attractive preventative measure against WSSV infection that can be used in the field

    Baculovirus-mediated promoter assay and transcriptional analysis of white spot syndrome virus orf427 gene

    Get PDF
    BACKGROUND: White spot syndrome virus (WSSV) is an important pathogen of the penaeid shrimp with high mortalities. In previous reports, Orf427 of WSSV is characterized as one of the three major latency-associated genes of WSSV. Here, we were interested to analyze the promoter of orf427 and its expression during viral pathogenesis. RESULTS: in situ hybridization revealed that orf427 was transcribed in all the infected tissues during viral lytic infection and the translational product can be detected from the infected shrimp. A time-course RT-PCR analysis indicated that transcriptional products of orf427 could only be detected after 6 h post virus inoculation. Furthermore, a baculovirus-mediated promoter analysis indicated that the promoter of orf427 failed to express the EGFP reporter gene in both insect SF9 cells and primary shrimp cells. CONCLUSION: Our data suggested that latency-related orf427 might not play an important role in activating virus replication from latent phase due to its late transcription during the lytic infection

    Complementary monoclonal antibody-based dot ELISA for universal detection of H5 avian influenza virus

    Get PDF
    BACKGROUND: Rapid diagnosis and surveillance for H5 subtype viruses are critical for the control of H5N1 infection. RESULTS: In this study, H5 Dot ELISA, a rapid test for the detection of avian H5N1 influenza virus, was developed with two complementary H5 monoclonal antibodies. HA sequencing of escape mutants followed by epitope mapping revealed that the two Mabs target the epitope component (189(th )amino acid) on the HA protein but are specific for different amino acids (189Lys or 189Arg). Gene alignment indicated that these two amino acids are the most frequent types on this position among all of the H5 AIV reported in GeneBank. These two H5 Mabs were used together in a dot ELISA to detect H5 viral antigen. The detection limit of the developed test for multiple clades of H5N1 viruses, including clades 0, 1, 2.1, 2.2, 2.3, 4, 7, and 8, was less than 0.5 hemagglutinin units. The specificity of the optimized dot ELISA was examined by using 100 H5 strains, including H5N1 HPAI strains from multiple clades, 36 non-H5N1 viruses, and 4 influenza B viruses. No cross-reactivity was observed for any of the non-H5N1 viruses tested. Among 200 random poultry samples, the test gave 100% positive results for all of the twelve RT-PCR-positive samples. CONCLUSIONS: Considering that the test is convenient for field use, this H5 Dot ELISA can be used for on-site detection of H5N1 infection in clinical or environmental specimens and facilitate the investigation of H5N1 influenza outbreaks and surveillance in poultry

    Streptococcus Pneumoniae Secretes Hydrogen Peroxide Leading to DNA Damage and Apoptosis in Lung Cells

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H[subscript 2]O[subscript 2], plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H[subscript 2]O[subscript 2], greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H[subscript 2]O[subscript 2] production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia

    Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

    Get PDF
    The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis

    A Novel Peptide ELISA for Universal Detection of Antibodies to Human H5N1 Influenza Viruses

    Get PDF
    BACKGROUND: Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA. CONCLUSION/SIGNIFICANCE: The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas
    corecore