91 research outputs found

    The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense

    Get PDF
    SummaryMicrobial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2−/− mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2−/− mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2−/− mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2−/− mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis

    Self-association of the Lentivirus protein, Nef

    Get PDF
    Abstract Background The HIV-1 pathogenic factor, Nef, is a multifunctional protein present in the cytosol and on membranes of infected cells. It has been proposed that a spatial and temporal regulation of the conformation of Nef sequentially matches Nef's multiple functions to the process of virion production. Further, it has been suggested that dimerization is required for multiple Nef activities. A dimerization interface has been proposed based on intermolecular contacts between Nefs within hexagonal Nef/FynSH3 crystals. The proposed dimerization interface consists of the hydrophobic B-helix and flanking salt bridges between R105 and D123. Here, we test whether Nef self-association is mediated by this interface and address the overall significance of oligomerization. Results By co-immunoprecipitation assays, we demonstrated that HIV-1Nef exists as monomers and oligomers with about half of the Nef protomers oligomerized. Nef oligomers were found to be present in the cytosol and on membranes. Removal of the myristate did not enhance the oligomerization of soluble Nef. Also, SIVNef oligomerizes despite lacking a dimerization interface functionally homologous to that proposed for HIV-1Nef. Moreover, HIV-1Nef and SIVNef form hetero-oligomers demonstrating the existence of homologous oligomerization interfaces that are distinct from that previously proposed (R105-D123). Intracellular cross-linking by formaldehyde confirmed that SF2Nef dimers are present in intact cells, but surprisingly self-association was dependent on R105, but not D123. SIVMAC239Nef can be cross-linked at its only cysteine, C55, and SF2Nef is also cross-linked, but at C206 instead of C55, suggesting that Nefs exhibit multiple dimeric structures. ClusPro dimerization analysis of HIV-1Nef homodimers and HIV-1Nef/SIVNef heterodimers identified a new potential dimerization interface, including a dibasic motif at R105-R106 and a six amino acid hydrophobic surface. Conclusions We have demonstrated significant levels of intracellular Nef oligomers by immunoprecipitation from cellular extracts. However, our results are contrary to the identification of salt bridges between R105 and D123 as necessary for self-association. Importantly, binding between HIV-1Nef and SIVNef demonstrates evolutionary conservation and therefore significant function(s) for oligomerization. Based on modeling studies of Nef self-association, we propose a new dimerization interface. Finally, our findings support a stochastic model of Nef function with a dispersed intracellular distribution of Nef oligomers

    Systemic Administration of Antiretrovirals Prior to Exposure Prevents Rectal and Intravenous HIV-1 Transmission in Humanized BLT Mice

    Get PDF
    Successful antiretroviral pre-exposure prophylaxis (PrEP) for mucosal and intravenous HIV-1 transmission could reduce new infections among targeted high-risk populations including discordant couples, injection drug users, high-risk women and men who have sex with men. Targeted antiretroviral PrEP could be particularly effective at slowing the spread of HIV-1 if a single antiretroviral combination were found to be broadly protective across multiple routes of transmission. Therefore, we designed our in vivo preclinical study to systematically investigate whether rectal and intravenous HIV-1 transmission can be blocked by antiretrovirals administered systemically prior to HIV-1 exposure. We performed these studies using a highly relevant in vivo model of mucosal HIV-1 transmission, humanized Bone marrow/Liver/Thymus mice (BLT). BLT mice are susceptible to HIV-1 infection via three major physiological routes of viral transmission: vaginal, rectal and intravenous. Our results show that BLT mice given systemic antiretroviral PrEP are efficiently protected from HIV-1 infection regardless of the route of exposure. Specifically, systemic antiretroviral PrEP with emtricitabine and tenofovir disoproxil fumarate prevented both rectal (Chi square = 8.6, df = 1, p = 0.003) and intravenous (Chi square = 13, df = 1, p = 0.0003) HIV-1 transmission. Our results indicate that antiretroviral PrEP has the potential to be broadly effective at preventing new rectal or intravenous HIV transmissions in targeted high risk individuals. These in vivo preclinical findings provide strong experimental evidence supporting the potential clinical implementation of antiretroviral based pre-exposure prophylactic measures to prevent the spread of HIV/AIDS

    The Effect of Direct Communication between Emergency Physicians and Interventional Cardiologists on Door to Balloon Times in STEMI

    Get PDF
    We developed an institutional protocol mandating emergency physicians to contact the interventional cardiologist directly in all cases of ST-segment elevation myocardial infarction (STEMI) and hypothesized that this would reduce door-to-balloon-times (DTBT). From January 2004 to July 2006, 208 patients with STEMI were treated with primary percutaneous coronary intervention (PCI). A total of 144 patients were treated before implementing the new protocol ("before") and 64 patients were treated after the implementation ("after"). The DTBT was significantly reduced from 148±101 min to 108±56 min (p<0.05). While only 25% of the "before" patients received PCI within 90 min after arrival, 50% of the "after" patients received PCI within 90 min (p<0.05). There were no significant differences between two groups in other outcomes (postprocedural TIMI flow, mortality, subsequent stroke, heart failure, shock, reinfarction, length of stay in intensive care unit, and the total hospital length of stay). In conclusion, mandating emergency physicians to directly notify interventional cardiologists of all STEMI patients reduces DTBT

    Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network

    No full text
    Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model
    corecore