5 research outputs found

    Out of and into Africa: Odour-mediated interaction and detection of the human commensal Drosophila melanogaster and the invasive fly Drosophila suzukii

    Get PDF
    Living organisms use their sense of smell to discriminate odours. Humans can sense females of the cosmopolitan Drosophila melanogaster, but whether humans can discriminate the cosmopolitan D. melanogaster strain from the conspecific Zimbabwe strain, was unknown. We showed that the cosmopolitan females emit a pheromonal aldehyde, (4Z)-4-undecenal (Z4-11Al), while Zimbabwe females emit Z4-11Al and (4Z)-4-nonenal (Z4-9Al), and that humans can discriminate the scent of the two strains. The aldehydes are oxidation products of cuticular dienes. Since across Drosophila species dienes have biological activities and can, during oxidization produce aldehydes, we propose that the aldehydes are involved in reproductive isolation. Another part of the thesis addresses a closely related species of D. melanogaster, D. suzukii, which is an invasive pest that damages soft fruits and causes financial losses. Its distribution in Sub-Saharan Africa was unknown. Traps targeting D. suzukii often attract non-target species such as D. melanogaster. We showed that D. suzukii is present in Kenya and that a mutualistic yeast, Hanseniaspora uvarum, can improve selectivity of traps. Curiously, on fruit, presence of D. melanogaster induces oviposition avoidance in D. suzukii. We showed that D. suzukii is present in Kenya and that a mutualistic yeast, Hanseniaspora uvarum, can improve selectivity of traps. We established that Z4-11Al partly induces the avoidance observed in D. suzukii. Altogether, our findings advance our understanding of the principle of olfaction across phylogenetically distant species, the dispersal of D. suzukii in Africa, and the potential of H. uvarum and chemo-ecological interactions in enhancing sound management of D. suzukii

    Hanseniaspora uvarum Attracts Drosophila suzukii (Diptera: Drosophilidae) With High Specificity

    Get PDF
    Since the early phase of the intercontinental dispersal of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), fermentation baits have been used for monitoring. Self-made lures and commercial products are often based on wine and vinegar. From an ecological perspective, the formulation of these baits is expected to target especially vinegar flies associated with overripe fruit, such as Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). Hanseniaspora uvarum (Niehaus) (Ascomycota: Saccharomyceta) is a yeast closely associated with D. suzukii and fruit, and furthermore attractive to the flies. Based on this relation, H. uvarum might represent a suitable substrate for the development of lures that are more specific than vinegar and wine. In the field, we therefore, compared H. uvarum to a commercial bait that was based on vinegar and wine with respect to the number of trapped D. suzukii relative to other drosophilids and arthropods. Trap captures were higher with the commercial bait but specificity for D. suzukii was greater with H. uvarum. Moreover, H. uvarum headspace extracts, as well as a synthetic blend of H. uvarum volatiles, were assayed for attraction of D suzukii in a wind tunnel and in the field. Headspace extracts and the synthetic blend induced strong upwind flight in the wind tunnel and confirmed attraction to H. uvarum volatiles. Furthermore, baited with H. uvarum headspace extract and a drowning solution of aqueous acetic acid and ethanol, 74% of field captured arthropods were D. suzukii. Our findings suggest that synthetic yeast headspace formulations might advance the development of more selective monitoring traps with reduced by-catch

    Heterologous expression and functional characterization of Drosophila suzukii OR69a transcript variants unveiled response to kairomones and to a candidate pheromone

    Get PDF
    Drosophila suzukii is a main pest of berries on all continents. Population control relies on insecticides and a current research challenge is to develop alternative strategies. Methods based on behavior-modifying semiochemicals are widely used against other horticultural insects, and the functional characterization of chemoreceptors facilitates the identification of active compounds. Following heterologous expression of single olfactory receptors (ORs) in ab3A olfactory sensory neurons of D. melanogaster, we screened three transcript variants from the OR69a-locus (DsuzOR69aA, DsuzOR69aB, DsuzOR69aC), demonstrating binding to two possible kairomones (3-octanol and R-carvone) and to a possible fly-emitted volatile compound [(Z)-4-nonenal], although with different pharmacological qualities. By coupling Gas Chromatography to SSR (GC-SSR), these ligands enhanced ab3A-spiking at nanogram-aliquots in a complementary fashion among the different OR69a-variants, and we identified another possible kairomone, methyl salicylate, as the most active and specific ligand for the sole DsuzOR69aB. In testing headspaces collected from D. suzukii females and from the fly-associated yeast Hanseniaspora uvarum we did not observe activation from female headspaces but activation from yeast headspaces. In situ hybridization analysis on D. suzukii antennae suggests unique expression of OR69a-subunits in specific neurons, and points toward co-expression within the same neurons. The OR69a-subunits of D. suzukii constitute cation channels, which binding suggests kairomone specificity, even if effects coexist for a complementary binding of (Z)-4-nonenal. Methyl salicylate is the most active ligand and is specific to the sole DsuzOR69aB, inspiring future investigation to validate potentials of this compound for D. suzukii control strategies

    Detection of the spotted wing drosophila, Drosophila suzukii, in continental sub-Saharan Africa

    Get PDF
    The spotted wing drosophila, Drosophila suzukii Matsumura, is an insect pest of soft-skinned fruit, native to Eastern Asia. Since 2008, a world-wide dispersal of D. suzukii is seen, characterized by the establishment of the pest in many Asian, American and European countries. While the potential for invasion of continental Africa by D. suzukii has been predicted, its presence has only been shown for Morocco in Northern Africa. Knowledge about a possible establishment in other parts of the continent is needed as a basis for pest management. In 2019, we carried out a first survey in three counties in Kenya to monitor for the presence of D. suzukii using traps baited with a blend of apple cider vinegar and red wine. A total of 389 D. suzukii flies were captured in a fruit farm at Nakuru county, with more female flies being trapped than males. We confirmed the morphological identification of D. suzukii using DNA barcoding. In 2020, we performed a follow-up survey at 14 locations in six counties to delimit the distribution of D. suzukii in the main berry growing zones in Kenya. The survey indicated that so far D. suzukii is restricted to Nakuru county where it was initially detected. This is the first study to provide empirical evidence of D. suzukii in continental sub-Saharan Africa, confirming that the pest is expanding its geographic range intercontinentally. Given the high dispersal potential of D. suzukii, a concerted effort to develop management strategies is a necessity for containment of the pest

    The Biology and Control of the Greater Wax Moth, Galleria mellonella

    No full text
    The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest
    corecore