4 research outputs found

    On predictable reconfigurable system design

    No full text
    We propose a design methodology to facilitate rigorous development of complex applications targeting reconfigurable hardware. Our methodology relies on analytical estimation of system performance and area utilisation for a given specific application and a particular system instance consisting of a controlflow machine working in conjunction with one or more reconfigurable dataflow accelerators. The targeted application is carefully analyzed, and the parts identified for hardware acceleration are reimplemented as a set of representative software models. Next, with the results of the application analysis, a suitable system architecture is devised and its performance is evaluated to determine bottlenecks, allowing predictable design. The architecture is iteratively refined, until the final version satisfying the specification requirements in terms of performance and required hardware area is obtained. We validate the presented methodology using a widely accepted convolutional neural network (VGG-16) and an important HPC application (BQCD). In both cases, our methodology relieved and alleviated all system bottlenecks before the hardware implementation was started. As a result the architectures were implemented first time right, achieving state-of-the-art performance within 15% of our modelling estimations

    Manipulating the self assembly of colloids in electric fields

    No full text
    During the last decade the focus in colloid science on selfassembly has moved from mostly spherical particles and interaction potentials to more and more complex particle shapes, interactions and conditions. In this minireview we focus on how external electric fields, which in almost all cases can be replaced by magnetic particles and fields for similar effects, are used to manipulate the self-assembly process of ever more complex colloids. We will illustrate typical results from literature next to examples of our own work on how electric fields are used to achieve a broad range of different effects guiding the self-assembly of colloidal dispersions. In addition, preliminary measurements and calculations on how electric fields can be used to induce lock-and-key interactions will be presented as well
    corecore