467 research outputs found

    AlN/AlGaN HEMTs on AlN substrate for stable high-temperature operation

    Get PDF
    We demonstrate an AlN/AlGaN high-electron-mobility transistor (HEMT) fabricated on a free-standing AlN substrate. A metal stack, composed of Zr/Al/Mo/Au, was found to show low contact resistivity for source and drain ohmic contacts. The fabricated AlN/AlGaN HEMT exhibited a maximum drain current of 38 mA/mm with a threshold voltage of -3.4 V. Negligible drain current degradation was observed at temperatures from 300 to 573 K, emonstrating that our AlN/AlGaN approach on an AlN substrate is promising for stable high-temperature operation

    NMR spectra of PB2 627, the RNA-binding domain in influenza A virus RNA polymerase that contains the pathogenicity factor lysine 627, and improvement of the spectra by small osmolytes

    Get PDF
    The influenza A virus, which has an RNA genome, requires RNA-dependent RNA polymerase for transcription and replication. The polymerase is comprised of the subunits PA, PB1, and PB2. The C-terminal RNA-binding domain in PB2 contains lysine 627 (PB2 627), which is associated with pathogenicity and host range. However, the structure and molecular mechanism of PB2 627 in solution remain obscure. Here, we investigated PB2 627 in solution by nuclear magnetic resonance (NMR) and detected inhomogeneity in the intensities of backbone amide proton signals due to local fluctuations in structure. To characterize the effects of chemical chaperones on spectral data and improve the data quality, we tested 20 different additives, including L-arginine L-glutamate salt, (L-arginine)2SO4, glycerol, β-octylglucoside, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Na2SO4, 1,5-diaminopentane, 1,4-diaminobutane, trehalose, sucrose, glycine, trimethylamine N-oxide, β-alanine, L-α-alanine, hydroxyectoine, betaine, L-proline, and non-detergent sulfobetaine 195, 201, and 256. We evaluated the quality of the resulting spectra by calculating the standard deviation and average of the ratio of signal intensities to noise level of amide peaks, as well as the ratio of the standard deviation to the average. NMR-profile analysis revealed diverse effects of additives on the dynamic properties of PB2 627. Based on such criteria, we found that small osmolytes such as glycine and L-α-alanine reduced structural fluctuations and improved the quality of spectral data, which is likely to facilitate a detailed NMR-based structural analysis. The methodology developed here may also be more generally useful for evaluating the effects of chemical chaperones on the structural integrity of proteins

    The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf

    Get PDF
    We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26±\pm0.05) G-dwarf (T_eff = 5430±\pm70 K and log g = 4.48±\pm0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2m telescope. High-spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <10610^{-6} using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88m telescope gives the orbital period of P = 8.266902±\pm0.000070 days and consistent transit depths of Rp/R0.035R_p/R_\star \sim 0.035 or (Rp/R)20.0012(R_p/R_\star)^2 \sim 0.0012. The transit depth corresponds to a planetary radius of Rp=3.590.39+0.44RR_p = 3.59_{-0.39}^{+0.44} R_{\oplus}, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3\sigma\ upper limit of 90 M(0.00027M)M_{\oplus} (0.00027 M_{\odot}) on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.Comment: 11 pages, 9 figures, 4 tables, PASJ accepte

    CHARIS Science: Performance Simulations for the Subaru Telescope's Third-Generation of Exoplanet Imaging Instrumentation

    Full text link
    We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared JJ, HH, and KK bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few λ/D\lambda/D, corresponding to \sim0.\!\!''1. SCExAO will also offer contrast approaching 10510^{-5} at similar separations, \sim0.\!\!''1--0.\!\!''2. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to \sim20 AU, observations of \sim200 mostly young, nearby stars targeted by existing high-contrast instruments might find \sim1--3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of R75R \sim 75, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and κ\kappa And b.Comment: 13 pages, 7 figures, proceedings from SPIE Montrea

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    The K2-ESPRINT Project. I. Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail

    Get PDF
    We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from \sim0\% to 1.3\%, are suggestive of a planet that is disintegrating via the emission of dusty effluents. We characterize the host star as an M-dwarf with Teff3800T_{\rm eff} \simeq 3800 K. We have obtained ground-based transit measurements with several 1-m class telescopes and with the GTC. These observations (1) improve the transit ephemeris; (2) confirm the variable nature of the transit depths; (3) indicate variations in the transit shapes; and (4) demonstrate clearly that at least on one occasion the transit depths were significantly wavelength dependent. The latter three effects tend to indicate extinction of starlight by dust rather than by any combination of solid bodies. The K2 observations yield a folded light curve with lower time resolution but with substantially better statistical precision compared with the ground-based observations. We detect a significant "bump" just after the transit egress, and a less significant bump just prior to transit ingress. We interpret these bumps in the context of a planet that is not only likely streaming a dust tail behind it, but also has a more prominent leading dust trail that precedes it. This effect is modeled in terms of dust grains that can escape to beyond the planet's Hill sphere and effectively undergo `Roche lobe overflow,' even though the planet's surface is likely underfilling its Roche lobe by a factor of 2.Comment: 22 pages, 16 figures. Final version accepted to Ap

    Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    Full text link
    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800--1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ~30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510 [+30, -20] K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.Comment: 20 pages, 12 figures, Accepted for publication in ApJ. Minor updates from the version

    Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius

    Full text link
    We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our HH-band data, which clearly exhibits a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14 ^{\circ}, respectively. The disk is asymmetric, with one dip located at P.A.s of 85\sim85^{\circ}. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.Comment: 21 pages, 3 figures, published 2012 November 7 by ApJL, typo correcte
    corecore