63 research outputs found

    Strong Equivalence Relations for Iterated Models

    Full text link
    The Iterated Immediate Snapshot model (IIS), due to its elegant geometrical representation, has become standard for applying topological reasoning to distributed computing. Its modular structure makes it easier to analyze than the more realistic (non-iterated) read-write Atomic-Snapshot memory model (AS). It is known that AS and IIS are equivalent with respect to \emph{wait-free task} computability: a distributed task is solvable in AS if and only if it solvable in IIS. We observe, however, that this equivalence is not sufficient in order to explore solvability of tasks in \emph{sub-models} of AS (i.e. proper subsets of its runs) or computability of \emph{long-lived} objects, and a stronger equivalence relation is needed. In this paper, we consider \emph{adversarial} sub-models of AS and IIS specified by the sets of processes that can be \emph{correct} in a model run. We show that AS and IIS are equivalent in a strong way: a (possibly long-lived) object is implementable in AS under a given adversary if and only if it is implementable in IIS under the same adversary. %This holds whether the object is one-shot or long-lived. Therefore, the computability of any object in shared memory under an adversarial AS scheduler can be equivalently investigated in IIS

    United classification of cosmic gamma-ray bursts and their counterparts

    Full text link
    United classification of gamma-ray bursts and their counterparts is established on the basis of measured characteristics: photon energy E and emission duration T. The founded interrelation between the mentioned characteristics of events consists in that, as the energy increases, the duration decreases (and vice versa). The given interrelation reflects the nature of the phenomenon and forms the E-T diagram, which represents a natural classification of all observed events in the energy range from 10E9 to 10E-6 eV and in the corresponding interval of durations from about 10E-2 up to 10E8 s. The proposed classification results in the consequences, which are principal for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Integrable systems on the sphere associated with genus three algebraic curves

    Full text link
    New variables of separation for few integrable systems on the two-dimensional sphere with higher order integrals of motion are considered in detail. We explicitly describe canonical transformations of initial physical variables to the variables of separation and vice versa, calculate the corresponding quadratures and discuss some possible integrable deformations of initial systems.Comment: 19 pages, LaTeX with AMS font

    International conference “Advanced element base of micro- And Nano-Electronics with using of to-date achievements of theoretical physics” 20-23 April 2021, Moscow, Russia

    No full text
    A brief description of scientific program and papers of International Conference “Advanced Element Base of Micro- and Nano-Electronics with Using of To-Date Achievements of Theoretical Physics” is presented. It is an annual conference of Moscow Region State University (MRSU). © 2021 Institute of Physics Publishing. All rights reserved

    Nematodes of rodents of Armenia

    No full text
    corecore