82 research outputs found
Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector
The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the SuperFRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR
Storage-ring mass spectrometry was applied to neutron-rich Au
projectile fragments. Masses of Lu, Hf, Ta,
W, and Re nuclei were measured for the first time. The
uncertainty of previously known masses of W and Os nuclei
was improved. Observed irregularities on the smooth two-neutron separation
energies for Hf and W isotopes are linked to the collectivity phenomena in the
corresponding nuclei.Comment: 10 pages, 9 figures, 2 table
Increased isomeric lifetime of hydrogen-like Os-192m
An excited metastable nuclear state of 192 Os in a hydrogen-like charge state has been studied for the first time. It was populated in projectile fragmentation of a 197Au beam on a 9Be target with the UNILAC-SIS accelerators at GSI. Fragmentation products in the region of interest were passed through the fragment separator and injected into the experimental storage ring (ESR). Cooling of the injected beam particles enabled Schottky mass spectrometry to be performed. Analysis shows the lifetime of the state to be considerably longer than that of the neutral ion [τneut=8.5(14) s]; this change is attributed to hindrance of internal conversion in hydrogen-like 192Os. Calculations have been performed to estimate the lifetime, and the result has been compared with that measured experimentally. There is good agreement between the expected [τH−like=13.0(24)s] and measured lifetimes (τrest=15.1+1.5−1.3s) from the internal decay of 192mOs. This provides a test for the reliability of the values obtained from internal conversion coefficient calculations in highly ionized systems and is the first measurement of its kind to be performed using the ESR setup
Precision of the PET activity range during irradiation with <sup>10</sup>C, <sup>11</sup>C, and <sup>12</sup>C beams
Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable 12C ions, the positron emitters 10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam. Approach. An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner. Main results. High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes 11C and 10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107 ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for 10C, 11C and 12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from 11C to 10C than when going from 12C to 11C. The much better precision for 10C is due to its much shorter half-life, which, contrary to the case of 11C, also enables to include the in-spill data in the image formation. Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.</p
- …