270 research outputs found
Optical properties of BiTeBr and BiTeCl
We present a comparative study of the optical properties - reflectance,
transmission and optical conductivity - and Raman spectra of two layered
bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized
in the a-b planes. Despite different space groups, the optical properties of
the two compounds are very similar. Both materials are doped semiconductors,
with the absorption edge above the optical gap which is lower in BiTeBr (0.62
eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two
materials. A non-Drude free carrier contribution in the optical conductivity,
as well as three Raman and two infrared phonon modes, are observed in each
compound. There is a dramatic difference in the highest infrared phonon
intensity for the two compounds, and a difference in the doping levels. Aspects
of the strong electron-phonon interaction are identified. Several interband
transitions are assigned, among them the low-lying absorption which has
the same value 0.25 eV in both compounds, and is caused by the Rashba spin
splitting of the conduction band. An additional weak transition is found in
BiTeCl, caused by the lower crystal symmetry.Comment: Accepted in PR
Triangular and Y-shaped hadrons in QCD
Gauge invariant extended configurations are considered for the three
fundamental (quarks) or adjoint (gluons) particles. For quarks it is shown that
the Y-shaped configuration is the only possible. For adjoint sources both the
Y-shaped and triangular configurations may realize. The corresponding static
potentials are calculated in the Method of Field Correlators and in the case of
baryon shown to be consistent with the lattice simulations. For adjoint sources
the potentials of Y-shaped and Delta-shaped configurations turn out to be close
to each other, which leads to almost degenerate masses of 3-- 3g glueballs and
odderon trajectories.Comment: 9 pages, 5 eps figures, latex2e, one reference adde
Oxygen isotope effect and phase separation in the optical conductivity of (LaPr)CaMnO thin films
The optical conductivities of films of
(LaPr)CaMnO with different oxygen isotopes
(O and O) have been determined in the spectral range from 0.3 to
4.3 eV using a combination of transmission in the mid-infrared and ellipsometry
from the near-infrared to ultra-violet regions. We have found that the isotope
exchange strongly affects the optical response in the ferromagnetic phase in a
broad frequency range, in contrast to the almost isotope-independent optical
conductivity above . The substitution by O strongly suppresses the
Drude response and a mid-infrared peak while enhancing the conductivity peak at
1.5 eV. A qualitative explanation can be given in terms of the phase separation
present in these materials. Moreover, the optical response is similar to the
one extracted from measurements in polished samples and other thin films, which
signals to the importance of internal strain.Comment: 11 pages, 11 figures, to appear in PR
Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene
We show that the optical transparency of suspended graphene is defined by the
fine structure constant, alpha, the parameter that describes coupling between
light and relativistic electrons and is traditionally associated with quantum
electrodynamics rather than condensed matter physics. Despite being only one
atom thick, graphene is found to absorb a significant (pi times alpha=2.3%)
fraction of incident white light, which is a consequence of graphene's unique
electronic structure. This value translates into universal dynamic conductivity
G =e^2/4h_bar within a few percent accuracy
Optical Self Energy in Graphene due to Correlations
In highly correlated systems one can define an optical self energy in analogy
to its quasiparticle (QP) self energy counterpart. This quantity provides
useful information on the nature of the excitations involved in inelastic
scattering processes. Here we calculate the self energy of the intraband
optical transitions in graphene originating in the electron-electron
interaction (EEI) as well as electron-phonon interaction (EPI). Although optics
involves an average over all momenta () of the charge carriers, the
structure in the optical self energy is nevertheless found to mirror mainly
that of the corresponding quasiparticles for equal to or near the Fermi
momentum . Consequently plasmaronic structures which are associated with
momenta near the Dirac point at are not important in the intraband
optical response. While the structure of the electron-phonon interaction (EPI)
reflects the sharp peaks of the phonon density of states, the excitation
spectrum associated with the electron-electron interaction is in comparison
structureless and flat and extends over an energy range which scales linearly
with the value of the chemical potential. Modulations seen on the edge of the
interband optical conductivity as it rises towards its universal background
value are traced to structure in the quasiparticle self energies around
of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure
The Missing Link: Magnetism and Superconductivity
The effect of magnetic moments on superconductivity has long been a
controversial subject in condensed matter physics. While Matthias and
collaborators experimentally demonstrated the destruction of superconductivity
in La by the addition of magnetic moments (Gd), it has since been suggested
that magnetic fluctuations are in fact responsible for the development of
superconducting order in other systems. Currently this debate is focused on
several families of unconventional superconductors including high-Tc cuprates,
borocarbides as well as heavy fermion systems where magnetism and
superconductivity are known to coexist. Here we report a novel aspect of
competition and coexistence of these two competing orders in an interesting
class of heavy fermion compounds, namely the 1-1-5 series: CeTIn5 where T=Co,
Ir, or Rh. Our optical experiments indicate the existence of regions in
momentum space where local moments remain unscreened. The extent of these
regions in momentum space appears to control both the normal and
superconducting state properties in the 1-1-5 family of heavy fermion (HF)
superconductors.Comment: 6 pages, 2 figure
Recommended from our members
Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings
LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision
Doping dependent optical properties of Bi2201
An experimental study of the in-plane optical conductivity of
(Pb,Bi)(LaSr)CuO (Bi2201) is presented
for a broad doping and temperature range. The in-plane conductivity is analyzed
within a strong coupling formalism. We address the interrelationship between
the optical conductivity (), the single particle self energy,
and the electron-boson spectral function. We find that the frequency and
temperature dependence can be well described within this formalism. We present
a universal description of optical, ARPES and tunneling spectra. The full
frequency and temperature dependence of the optical spectra and single particle
self-energy is shown to result from an electron-boson spectral function, which
shows a strong doping dependence and weak temperature dependence.Comment: 20 pages, 9 figures. To appear in special focus issue
"Superconductors with Exotic Symmetries", New Journal of Physic
Kondo effect in systems with dynamical symmetries
This paper is devoted to a systematic exposure of the Kondo physics in
quantum dots for which the low energy spin excitations consist of a few
different spin multiplets . Under certain conditions (to be
explained below) some of the lowest energy levels are nearly
degenerate. The dot in its ground state cannot then be regarded as a simple
quantum top in the sense that beside its spin operator other dot (vector)
operators are needed (in order to fully determine its quantum
states), which have non-zero matrix elements between states of different spin
multiplets . These "Runge-Lenz"
operators do not appear in the isolated dot-Hamiltonian (so in some sense they
are "hidden"). Yet, they are exposed when tunneling between dot and leads is
switched on. The effective spin Hamiltonian which couples the metallic electron
spin with the operators of the dot then contains new exchange terms,
beside the ubiquitous ones . The operators and generate a
dynamical group (usually SO(n)). Remarkably, the value of can be controlled
by gate voltages, indicating that abstract concepts such as dynamical symmetry
groups are experimentally realizable. Moreover, when an external magnetic field
is applied then, under favorable circumstances, the exchange interaction
involves solely the Runge-Lenz operators and the corresponding
dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is
realized in triple quantum dot with four electrons.Comment: 24 two-column page
- …