49 research outputs found

    Effect of hydrogen peroxide oxidation systems on human urinary steroid profiles

    Full text link
    In sports drug testing the steroid profile is the most versatile and informative screening tool for the detection of steroid abuse. Despite the introduction of observed urine collection procedures by the World Anti-Doping Agency (WADA), chemical manipulation of urine specimens by athletes to conceal drug use still occurs and poses an ongoing challenge for doping control laboratories worldwide. In vitro urine adulteration using highly oxidative chemicals have been reported several times in the past. In this study we report the effect of two oxidising agents, Fenton's reagent and peroxidase-peroxide system on the human urinary steroid profile. Varying concentrations of these oxidants were reacted with urine and the reactions monitored by gas chromatography-mass spectrometry. A significant decrease in the absolute concentrations of androsterone, etiocholanolone, 5α-androstane-3α, 17β-diol, 5β-androstane-3α,17β-diol and epitestosterone was observed with consequent alteration of the steroid profile ratios. Adulteration of urine sample with these oxidants can thus mask the abnormality in a steroidal profile following steroid abuse. Drug testing authorities should take into account the effects of these oxidizing adulterants while interpreting the steroid profile data for doping control purposes. © The Royal Society of Chemistry

    High Yielding Acid-Catalysed Hydrolysis of Cellulosic Polysaccharides and Native Biomass into Low Molecular Weight Sugars in Mixed Ionic Liquid Systems

    Full text link
    © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. Ionic media comprising 1-butyl-3-methylimidazolium chloride and the acidic deep eutectic solvent choline chloride/oxalic acid as co-solvent-catalyst, very efficiently convert various cellulosic substrates, including native cellulosic biomass, into water-soluble carbohydrates. The optimum reaction systems yield a narrow range of low molecular weight carbohydrates directly from cellulose, lignocellulose, or algal saccharides, in high yields and selectivities up to 98 %. Cellulose possesses significant potential as a renewable platform from which to generate large volumes of green replacements to many petrochemical products. Within this goal, the production of low molecular weight saccharides from cellulosic substances is the key to success. Native cellulose and lignocellulosic feedstocks are less accessible for such transformations and depolymerisation of polysaccharides remains a primary challenge to be overcome. In this study, we identify the catalytic activity associated with selected deep eutectic solvents that favours the hydrolysis of polysaccharides and develop reaction conditions to improve the outcomes of desirable low molecular weight sugars. We successfully apply the chemistry to raw bulk, non-pretreated cellulosic substances

    A Systematic Study of Metal Triflates in Catalytic Transformations of Glucose in Water and Methanol: Identifying the Interplay of Brønsted and Lewis Acidity

    Full text link
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Invited for this month′s cover is the group of Prof. Bradley Williams at the University of Technology Sydney. The image depicts the manifold products that can be selected in transformations of glucose through manipulation of the Brønsted or Lewis acidity of the catalyst. The Full Paper itself is available at 10.1002/cssc.201900292

    Acid-Catalyzed Conversion of Carbohydrates into Value-Added Small Molecules in Aqueous Media and Ionic Liquids

    Full text link
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Biomass is the only realistic major alternative source (to crude oil) of hydrocarbon substrates for the commercial synthesis of bulk and fine chemicals. Within biomass, terrestrial sources are the most accessible, and therein lignocellulosic materials are most abundant. Although lignin shows promise for the delivery of certain types of organic molecules, cellulose is a biopolymer with significant potential for conversion into high-volume and high-value chemicals. This review covers the acid-catalyzed conversion of lower value (poly)carbohydrates into valorized organic building-block chemicals (platform molecules). It focuses on those conversions performed in aqueous media or ionic liquids to provide the reader with a perspective on what can be considered a best case scenario, that is, that the overall process is as sustainable as possible

    In vitro metabolism of synthetic cannabinoid AM1220 by human liver microsomes and Cunninghamella elegans using liquid chromatography coupled with high resolution mass spectrometry

    Full text link
    © 2018, The Author(s). Purpose: Identifying intake of synthetic cannabinoids generally requires the metabolism data of the drugs so that appropriate metabolite markers can be targeted in urine testing. However, the continuous appearance of new cannabinoids during the last decade has made it difficult to keep up with all the compounds including {1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}(naphthalen-1-yl)methanone (AM1220). In this study, metabolism of AM1220 was investigated with human liver microsomes and the fungus Cunninghamella elegans. Methods: Metabolic stability of AM1220 was analysed by liquid chromatography–tandem mass spectrometry in multiple reaction monitoring mode after 1 µM incubation in human liver microsomes for 30 min. Tentative structure elucidation of metabolites was performed on both human liver microsome and fungal incubation samples using liquid chromatography–high-resolution mass spectrometry. Results: Half-life of AM1220 was estimated to be 3.7 min, indicating a high clearance drug. Nine metabolites were detected after incubating human liver microsomes while seven were found after incubating Cunninghamella elegans, leading to 11 metabolites in total (five metabolites were common to both systems). Demethylation, dihydrodiol formation, combination of the two, hydroxylation and dihydroxylation were the observed biotransformations. Conclusions: Three most abundant metabolites in both human liver microsomes and Cunninghamella elegans were desmethyl, dihydrodiol and hydroxy metabolites, despite different isomers of dihydrodiol and hydroxy metabolites in each model. These abundant metabolites can potentially be useful markers in urinalysis for AM1220 intake

    Acid-Catalysed Conversion of Carbohydrates into Furan-Type Molecules in Zinc Chloride Hydrate

    Full text link
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Acid-catalysed conversion of biomass, specifically cellulose, holds promise to create value-added, renewable replacements for many petrochemical products. We investigated an unusual acid-catalysed transformation of cellulose and cellobiose in the biphasic solvent system zinc chloride hydrate (ionic liquid)/anisole. Here, furyl hydroxymethyl ketone and furfural are obtained as major products, which are valuable but less commonly formed in high yields in transformations of cellulosic substrates. We explored this chemistry in small-scale model reactions and applied the optimised methods to the conversion of cellulose in bench-scale processes. The optimum reaction system and preferred reaction conditions are defined to select for highly desirable furanoid products in the highest known yields (up to 46 %) directly from cellulose or cellobiose. The method avoids the use of added catalysts: the ionic solvent zinc chloride hydrate possesses the intrinsic acidity required for the hydrolysis and chemical transformation steps. The process involves inexpensive media for the catalytic conversion of cellulose into high-value products under mild processing conditions

    Structural Elucidation of Metabolites of Synthetic Cannabinoid UR-144 by Cunninghamella elegans Using Nuclear Magnetic Resonance (NMR) Spectroscopy

    Full text link
    © 2018, American Association of Pharmaceutical Scientists. The number of new psychoactive substances keeps on rising despite the controlling efforts by law enforcement. Although metabolism of the newly emerging drugs is continuously studied to keep up with the new additions, the exact structures of the metabolites are often not identified due to the insufficient sample quantities for techniques such as nuclear magnetic resonance (NMR) spectroscopy. The aim of the study was to characterise several metabolites of the synthetic cannabinoid (1-pentyl-1H-indol-3-yl) (2,2,3,3-tetramethylcyclopropyl) methanone (UR-144) by NMR spectroscopy after the incubation with the fungus Cunninghamella elegans. UR-144 was incubated with C. elegans for 72 h, and the resulting metabolites were chromatographically separated. Six fractions were collected and analysed by NMR spectroscopy. UR-144 was also incubated with human liver microsomes (HLM), and the liquid chromatography-high resolution mass spectrometry analysis was performed on the HLM metabolites with the characterised fungal metabolites as reference standards. Ten metabolites were characterised by NMR analysis including dihydroxy metabolites, carboxy and hydroxy metabolites, a hydroxy and ketone metabolite, and a carboxy and ketone metabolite. Of these metabolites, dihydroxy metabolite, carboxy and hydroxy metabolites, and a hydroxy and ketone metabolite were identified in HLM incubation. The results indicate that the fungus is capable of producing human-relevant metabolites including the exact isomers. The capacity of the fungus C. elegans to allow for NMR structural characterisation by enabling production of large amounts of metabolites makes it an ideal model to complement metabolism studies

    Data on individual metabolites of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans

    Get PDF
    © 2016 The Authors. Synthetic cannabinoids JWH-018, JWH-073 and AM2201 were metabolised by the fungus Cunninghamella elegans. In this article, data on individual metabolites of their retention times, mass accuracies, major product ions and structures indicated by product ions are presented. The data in this article is related to "Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans" [1]

    Biotransformation of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans

    Full text link
    © 2015 Elsevier Ireland Ltd. Being marketed as "legal" smoking blends or mixtures, synthetic cannabinoids are abused widely owing to its cannabis-like effect. Due to the rapid introduction of new generation analogues of synthetic cannabinoids to escape from legislative/judicial control, the investigation of the metabolic pathways of these substances is of particular importance for drug control, abstinence and forensic toxicology purposes. In this study, the in vitro metabolism of JWH-018, JWH-073 and AM2201 by the fungus Cunninghamella elagans has been investigated with the purpose of validating its potential as a complementary model for investigating synthetic cannabinoid metabolism. JWH-018, JWH-073 and AM2201 were incubated for 72 h with C. elegans. Detection of metabolites was based on liquid chromatography-tandem mass spectrometry and high resolution mass spectrometry analysis. C. elegans was found capable of producing the majority of the phase I metabolites observed in earlier in vitro and in vivo mammalian studies as a result of monohydroxylation, dihydroxylation, carboxylation, dehydrogenation, ketone formation, dihydrodiol formation, dihydrodiol formation with N-dealkylation and combinations thereof. C. elegans can thus be a useful and economic model for studying synthetic cannabinoid metabolism

    Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease.

    Full text link
    The high morbidity and mortality of neuroinflammatory diseases drives significant interest in understanding the underlying mechanisms involved in the innate and adaptive immune response of the central nervous system (CNS). Diagnostic biomarkers are important to define treatable neuroinflammation. Metabolomics is a rapidly evolving research area offering novel insights into metabolic pathways, and elucidation of reliable metabolites as biomarkers for diseases. This review focuses on the emerging literature regarding the detection of neuroinflammation using cerebrospinal fluid (CSF) metabolomics in human cohort studies. Studies of classic neuroinflammatory disorders such as encephalitis, CNS infection and multiple sclerosis confirm the utility of CSF metabolomics. Additionally, studies in neurodegeneration and neuropsychiatry support the emerging potential of CSF metabolomics to detect neuroinflammation in common CNS diseases such as Alzheimer's disease and depression. We demonstrate metabolites in the tryptophan-kynurenine pathway, nitric oxide pathway, neopterin and major lipid species show moderately consistent ability to differentiate patients with neuroinflammation from controls. Integration of CSF metabolomics into clinical practice is warranted to improve recognition and treatment of neuroinflammation
    corecore