6 research outputs found

    The Ability of a Novel Strain Scheffersomyces (Syn. Candida) shehatae Isolated from Rotten Wood to Produce Arabitol

    Get PDF
    Arabitol is a polyalcohol which has about 70% of the sweetness of sucrose and an energy density of 0.2 kcal/g. Similarly to xylitol, it can be used in the food and pharmaceutical industries as a natural sweetener, a texturing agent, a dental caries reducer, and a humectant. Bio­technological production of arabitol from sugars represents an interesting alternative to chemical production. The yeast Scheffersomyces shehatae strain 20BM-3 isolated from rotten wood was screened for its ability to produce arabitol from L-arabinose, glucose, and xylose. This isolate, cultured at 28°C and 150 rpm, secreted 4.03 ± 0.00 to 7.97 ± 0.67 g/l of arabitol from 17–30 g/l of L-arabinose assimilated from a medium containing 20–80 g/l of this pentose with yields of 0.24 ± 0.00 to 0.36 ± 0.02 g/g. An optimization study demonstrated thatpH 4.0, 32°C, and a shaking frequency of 150 rpm were the optimum conditions for arabitol production by the investigated strain. Under these conditions, strain 20BM-3 produced 6.2 ± 0.17 g/l of arabitol from 17.5 g/l of arabinose after 4 days with a yield of 0.35 ± 0.01 g/g. This strain also produced arabitol from glucose, giving much lower yields, but did not produce it from xylose. The new strain can be successfully used for arabitol production from abundantly available sugars found in plant biomass

    The production of arabitol by a novel plant yeast isolate Candida parapsilosis 27RL-4

    No full text
    Polyalcohol arabitol can be used in the food and pharmaceutical industries as a natural sweetener, a dental caries reducer, and texturing agent. Environmental samples were screened to isolate effective yeast producers of arabitol. The most promising isolate 27RL-4, obtained from raspberry leaves, was identified genetically and biochemically as Candida parapsilosis. It secreted 10.42– 10.72 g l-1 of product from 20 g l-1 of L-arabinose with a yield of 0.51 - 0.53 g g-1 at 28°C and a rotational speed of 150 rpm. Batch cultures showed that optimal pH value for arabitol production was 5.5. High yields and productivities of arabitol were obtained during incubation of the yeast at 200 rpm, or at 32°C, but the concentrations of the polyol did not exceed 10 g l-1. In modified medium, with reduced amounts of nitrogen compounds and pH 5.5-6.5, lower yeast biomass produced a similar concentration of arabitol, suggesting higher efficiency of yeast cells. This strain also produced arabitol from glucose, with much lower yields. The search for new strains able to successfully produce arabitol is important for allowing the utilization of sugars abundant in plant biomass

    Unlocking the potential of DNA-based tagging: current market solutions and expanding horizons

    No full text
    The commercialization of DNA tagging is a growing trend that demonstrates the increasing practicality of this novel approach. This interdisciplinary technology is based on the distinctive characteristics of DNA as a molecule that can remain stable in varying environmental conditions and store data following appropriate preparation. Moreover, newly developed technologies could simplify DNA synthesis and the encoding of data within DNA. The implementation of DNA tagging presents distinctive benefits in comparison to conventional labelling techniques, including universal product code (UPC) barcoding, radio-frequency identification (RFID), quick response (QR) codes, and Bluetooth technologies, by surmounting the limitations encountered by these systems. The discourse pertains to extant DNA-tagging mechanisms along with prospective implementations in a wide range of domains, including but not limited to art, the metaverse, forensics, wildlife monitoring, and the military. The potential of DNA labelling in various contexts underscores the importance of continued research and development in this rapidly evolving field

    A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production

    No full text
    Abstract The ability of Rhizopus oryzae to produce fumaric acid in the presence of glycerol and/or various monosaccharides as carbon sources was examined for seventeen different strains of this fungi. These strains were tested in shake-flask cultures on media containing glycerol and seven different carbohydrates, including glucose, fructose, galactose, mannose, xylose, arabinose, and rhamnose. An interesting and applicationally useful phenomenon was observed. This work presents a new approach to the conventional microbiological method of producing fumaric acid. In the presence of 40 g/l glycerol as the sole carbon source, fumaric acid production reached 0.16–6.1 g/l after 192 h. When monosaccharides were used as a single carbon source, the maximum fumaric acid concentration was much higher; for example, 19.8 g/l was achieved when 40 g/l xylose was used. In the co-fermentation of xylose (40 g/l) and glycerol (20 g/l), post-culture broth contained approx. 28.0 g/l of fumaric acid with a process yield of 0.90 g/g after 168 h. The production of fumaric acid by Rhizopus oryzae was also increased in the dual presence of glycerol and monosaccharides like fructose, galactose, and mannose. However, results obtained on glucose-glycerol-based medium did not follow this trend, showing instead complete utilization of glucose with significant glycerol consumption, but unexpectedly low final amounts of fumaric acid and process yields. Understanding how Rhizopus oryzae utilize various carbon sources may provide alternative avenues of fumaric acid fermentation

    The Occurrence of Mycotoxins in Organic Spelt Products

    No full text
    Mycotoxins have a proven toxic effect on the health of humans and animals. Nowadays, there is a focus on having a healthy lifestyle and consuming organic foods. High quality grain products, especially spelt products, which are an important element of a well-balanced diet have become more popular. The aim of this study was to determine the mycotoxin content in spelt products available on the Polish market. Spelt products were collected in 2009 and 2010 in eastern Poland. The Enzyme-Linked ImmunoSorbent Assay (ELISA) method was used to identify aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, and zearalenone. The study confirmed that all investigated mycotoxins were present in spelt products
    corecore