16 research outputs found

    An investigation into source and distribution of bromoform in the Southern African and Southern Ocean Marine boundry layer

    Get PDF
    Includes bibliographical references.Bromoform is a climatically important atmospheric trace gas. It is released by macro- and microalgae into the ocean, and rapidly transferred to the atmosphere, where bromoform undergoes rapid photolysis yielding bromine radicals. These bromine radicals are known to participate in catalytic destruction of ozone at all levels throughout the atmosphere. This is especially important in the lower stratosphere. This destruction of ozone results in changes in the oxidative potential and decreases the greenhouse effect of the troposphere. A task-specific gas chromatograph with electron capture detector system, developed in-house, was used for the separation and quantitative detection of bromoform mixing ratios from environmental air samples. A custom thermal desorption unit was designed and built for use in this system along with a graphical user interface for the real-time collection and display of data. A limit of detection of 0.79 ± 0.09 ppt, with an overall precision of 12.7 % was achieved with this GC system and method. The quantitative detection of bromoform mixing ratios was made at the Cape Point, Global Atmospheric Watch station over a one month period in early spring 2011. Bromoform mixing ratios detected ranged between 2.29 and 84.7 ppt with a mean of 24.7 ppt. These mixing ratios appear to be generally elevated compared to previous studies, however, were still within the maximum values published. Local kelp beds around Cape Point and possibly anthropogenic inputs from Cape Town are likely to have been the dominant source of bromoform measured there, caused by changes in wind speed. A series of experiments were performed to explore the role of the bromoperoxidase enzyme in providing antioxidant protection in two diatom species (Phaeodactylum tricornutum and Chaetoceros neogracile_cf ) under different oxidative stresses. Carbon dioxide and nitrate limitation were induced as oxidative stresses. The mean per cell bromoform concentrations during the growth phase of the carbon limitation were 2.73 x 10¯¹⁷ and 8.68 x 10¯¹⁸ mol cell¯¹ for C. neogracile_cf and P. tricornutum, respectively. This decreased to 2.94 x 10¯¹⁸ and 3.87 x 10¯¹⁸ mol cell¯¹ during the limited phase. Bromoform production decreased to zero for P. tricornutum during the nitrate limitation. These experiments suggest that in these species bromoperoxidase is not utilised as an antioxidant pathway when under these nutrient limiting conditions

    IL-13-induced airway mucus production is attenuated by MAPK13 inhibition

    Get PDF
    Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13–driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases

    Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease

    Get PDF
    Chronic obstructive lung disease is characterized by persistent abnormalities in epithelial and immune cell function that are driven, at least in part, by infection. Analysis of parainfluenza virus infection in mice revealed an unexpected role for innate immune cells in IL-13–dependent chronic lung disease, but the upstream driver for the immune axis in this model and in humans with similar disease was undefined. We demonstrate here that lung levels of IL-33 are selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe chronic obstructive pulmonary disease (COPD). In the mouse model, IL-33/IL-33 receptor signaling was required for Il13 and mucin gene expression, and Il33 gene expression was localized to a virus-induced subset of airway serous cells and a constitutive subset of alveolar type 2 cells that are both linked conventionally to progenitor function. In humans with COPD, IL33 gene expression was also associated with IL13 and mucin gene expression, and IL33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33. Together, these findings provide a paradigm for the role of the innate immune system in chronic disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production

    Quest Volume 4 Number 4

    No full text
    Contents: HIV in South Africa - 2008 - The Desmond Tutu HIV Foundation is a key research facility in South Africa. Members of the Foundation discuss the epidemic in South Africa: Taking the pain out of testing -The Tutu Tester has been drawing the crowds around Cape Town - including members of the band Freshlyground: HIV in South Africa - the numbers - Understanding the epidemiology of HIV infection in South Africa is a critical first step in any attempt to address the epidemic. Taking the medicine - Antiretroviral treatment can transform an infected person's life, but it must be taken for life: A double burden - HIV and TB - Current tuberculosis control measures are failing - mainly because of the epidemic of HIV: Prevention is key - With clinical trials of HIV currently stalled, the focus is now on all forms of prevention: What can genes tell us about invasive species? - Genetics can help us to identify alien invasive plants accurately - which is crucial to their management: Antarctic science for the next generation - The Antarctic region is changing faster than anywhere else on the planet, so Antarctic science provides a sensitive indicator of environmental change in a unique environment: Alien species -reptiles and amphibians - South Africa does not yet have a problem with invasive alien species, but without the correct management this could change: Climate change - Taking the initiative - The British Council Climate Change Champions are actively seeking solutions within their own local communities: Conserving the Timbuktu manuscripts - South Africa is actively contributing to helping - Mali conserve its important and ancient manuscripts: Fact files - Climate change - Taking the initiative - The British Council Climate Change Champions are actively seeking solutions within their own local communities: Conserving the Timbuktu manuscripts South Africa is actively contributing to helping Mali conserve its important and ancient manuscripts. HIV vaccines - Antarctica - More on South African Reptiles: Viewpoint - Organophosphates are common in the environment so it is important to avoid poisoning:The Department of Science and Innovation: Academy of Science of South Afric
    corecore