67 research outputs found

    Analytic parametrizations of the non-perturbative Pomeron and QCD-inspired models

    Full text link
    We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data (proton- proton, antiproton-proton, pion-proton, kaon-proton, photon-proton, photon- photon, sigma-proton). Although these parametrizations are very close for energy larger than 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term ~(ln s)**2 enables one to extend the fit down to 4 GeV.Comment: 11 pages, 2 tables, Presented at the 9th Blois Workshop on Elastic and Diffractive Scattering, Pruhonice, Czech Republic, 9-15 June 200

    New measures of the quality and of the reliability of fits applied to forward hadronic data at t=0

    Get PDF
    We develop five new statistical measures of the quality of fits, which we combine with the usual confidence level to determine the models which fit best all available data for total cross sections and for the real part of the forward hadronic amplitude.Comment: 7 pages, presented by J.R. Cudell on behalf of the COMPETE collaboration at the 6th workshop on non-perturbative QCD, American University of Paris, 5-9 June 200

    Analytic Amplitude Models for Forward Scattering

    Get PDF
    We report on fits of a large class of analytic amplitude models for forward scattering against the comprehensive data for all available reactions. To differentiate the goodness of the fits of many possible parametrizations to a large sample of data, we developed and used a set of quantitative indicators measuring statistical quality of the fits over and beyond the typical criterion of the X2/dof\Chi^2 /dof. These indicators favor models with a universal log2s log^2 s Pomeron term, which enables one to extend the fit down to s=4\sqrt s = 4 GeV.Comment: 13 pages, COMPETE Collaboration, talk presented at the 9th International Conference (Blois Workshop) on Elastic and Diffractive Scatterin

    Forward observables at RHIC, the Tevatron run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma -> hadrons up to sqrt(s)=1 TeV. These predictions are based on a study of many possible analytic parametrisations and invoke the current hadronic dataset at t=0. The uncertainties on total cross sections, including the systematic theoretical errors, reach 1% at RHIC, 3% at the Tevatron, and 10% at the LHC, whereas those on the rho parameter are respectively 10%, 17%, and 26%.Comment: 11 pages, 2 figures, LaTeX, presented at the Second International "Cetraro" Workshop & NATO Advanced Research Workshop "Diffraction 2002", Alushta, Crimea, Ukraine, August 31 - September 6, 200

    Benchmarks for the Forward Observables at RHIC, the Tevatron-run II and the LHC

    Get PDF
    We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at cosmic-ray energies and for gamma gamma-> hadrons up to sqrt{s}=1 TeV. These predictions are based on an extensive study of possible analytic parametrisations invoking the biggest hadronic dataset available at t=0. The uncertainties on total cross sections, including the systematic errors due to contradictory data points from FNAL, can reach 1.9% at RHIC, 3.1% at the Tevatron, and 4.8% at the LHC, whereas those on the rho parameter are respectively 5.4%, 5.2%, and 5.4%.Comment: 11 pages, 2 figures, 4 tables, RevTeX

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    Measurement of the branching fraction of J/ψρπJ/\psi\rightarrow\rho\pi at KEDR

    Full text link
    We present the study of the decay J/ψρπJ/\psi \rightarrow \rho \pi. The results are based on of 5.2 million J/ψJ/\psi events collected by the KEDR detector at VEPP-4M collider. The branching fraction is measured to be B(J/ψρπ)=(2.072±0.017±0.056)102\mathcal{B}(J/\psi\rightarrow\rho\pi) = \big(2.072\pm 0.017 \pm 0.056 \big)\cdot 10^{-2} where the first uncertainty is statistical, the second one is systematic. This is the most precise single measurement of this quantity at the moment
    corecore