1,039 research outputs found

    Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    Full text link
    oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In addition to the temperature-dependent dielectric constant measurement, X-ray diffraction was also used to identify the poling-induced phase transitions. Results showed that the phase transition significantly depends on the poling intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random internal field to perform the phase transition from rhombohedral ferroelectric state with short range ordering (microdomain) FESRO to rhombohedral ferroelectric state with long range ordering (macrodomain) FElRO. But the rhombohedral ferroelectric to tetragonal ferroelectric phase transition originating from to polarization rotation can only be induced by a stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed higher piezoelectric constant, d33>1500 pC/N, than the sample poled at Epoling=13 kV/cm.Comment: 7 pages, 2 figure

    The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy

    Full text link
    We report on the observation of the yellow exciton Lyman series up to the fourth term in Cu2O by time-resolved mid-infrared spectroscopy. The dependence of the oscillator strength on the principal quantum number n can be well reproduced using the hydrogenic model including an AC dielectric constant, and precise information on the electronic structure of the 1s exciton state can be obtained. A Bohr radius a_{1s}=7.9 A and a 1s-2p transition dipole moment \mu_{1s-2p}= 4.2 eA were found

    Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor

    Full text link
    We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) doped with 8% PbTiO3_3 (PT), a relaxor compound with a Curie temperature TC450_C \sim 450 K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field E\vec{E} oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place

    An Anomalous Phase in the Relaxor Ferroelectric Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3

    Full text link
    X-ray diffraction studies on a Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) single crystal sample show the presence of two different structures. An outer-layer exists in the outer most \sim 10 to 50~μ\mum of the crystal, and undergoes a structural phase transition at the Curie temperature TC410T_C\approx410 K. The inside phase is however, very different. The lattice inside the crystal maintains a cubic unit cell, while ferroelectric polarization develops below TCT_C. The lattice parameter of the cubic unit cell remains virtually a constant, i.e., much less variations compared to that of a typical relaxor ferroelectric, in a wide temperature range of 15 K to 750 K. On the other hand, broadening of Bragg peaks and change of Bragg profile line-shapes in both longitudinal and transverse directions at TCT_C clearly indicate a structural phase transition occurring.Comment: to be submitted for PR

    Critical Temperature and Condensate Fraction of a Fermion Pair Condensate

    Full text link
    We report on measurements of the critical temperature and the temperature dependence of the condensate fraction for a fermion pair condensate of 6Li atoms. The Bragg spectroscopy is employed to determine the critical temperature and the condensate fraction after a fast magnetic field ramp to the molecular side of the Feshbach resonance. Our measurements reveal the level-off of the critical temperature and the limiting behavior of condensate fraction near the unitarity limit

    Diffuse Neutron Scattering Study of a Disordered Complex Perovskite Pb(Zn1/3Nb2/3)O3 Crystal

    Full text link
    Diffuse scattering around the (110) reciprocal lattice point has been investigated by elastic neutron scattering in the paraelectric and the relaxor phases of the disordered complex perovskite crystal-Pb(Zn1/3Nb2/3)O3(PZN). The appearance of a diffuse intensity peak indicates the formation of polar nanoregions at temperature T*, approximately 40K above Tc=413K. The analysis of this diffuse scattering indicates that these regions are in the shape of ellipsoids, more extended in the direction than in the direction. The quantitative analysis provides an estimate of the correlation length, \xi, or size of the regions and shows that \xi ~1.2\xi , consistent with the primary or dominant displacement of Pb leading to the low temperature rhombohedral phase. Both the appearance of the polar regions at T*and the structural transition at Tc are marked by kinks in the \xi curve but not in the \xi one, also indicating that the primary changes take place in a direction at both temperatures.Comment: REVTeX file. 4 pages, 3 figures embedded, New version after referee cond-mat/010605

    The Persistence and Memory of Polar Nano-Regions in a Ferroelectric Relaxor Under an Electric Field

    Full text link
    The response of polar nanoregions (PNR) in the relaxor compound Pb[(Zn1/3_{1/3}Nb2/3_{2/3})0.92_{0.92}Ti0.08_{0.08}]O3_3 subject to a [111]-oriented electric field has been studied by neutron diffuse scattering. Contrary to classical expectations, the diffuse scattering associated with the PNR persists, and is even partially enhanced by field cooling. The effect of the external electric field is retained by the PNR after the field is removed. The ``memory'' of the applied field reappears even after heating the system above TCT_C, and cooling in zero field

    Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3

    Full text link
    Recent neutron scattering measurements performed on the relaxor ferroelectric Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of scattering resembles a waterfall when plotted as a phonon dispersion diagram, and extends vertically from the transverse acoustic (TA) branch near 4 meV to the transverse optic (TO) branch near 9 meV. No zone center optic mode was found. We report new results from an extensive neutron scattering study of pure PZN that exhibits the same waterfall feature. We are able to model the dynamics of the waterfall using a simple coupled-mode model that assumes a strongly q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1 as one approaches the zone center. This model was motivated by the results of Burns and Dacol in 1983, who observed the formation of a randomly-oriented local polarization in PZN at temperatures far above its ferroelectric phase transition temperature. The dramatic increase in Gamma1 is believed to occur when the wavelength of the optic mode becomes comparable to the size of the small polarized micro-regions (PMR) associated with this randomly-oriented local polarization, with the consequence that longer wavelength optic modes cannot propagate and become overdamped. Below Tc=410 K, the intensity of the waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review

    Formation and decay of electron-hole droplets in diamond

    Full text link
    We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct-gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {\em et al.} [Phys. Rev. B {\bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.Comment: 7 pages, 8 figures, revised with some modifications in physics discussion, to be published in PR
    corecore