2,514 research outputs found

    Pressure-induced phase transitions of halogen-bridged binuclear metal complexes R_4[Pt_2(P_2O_5H_2)_4X]nH_2O

    Full text link
    Recent contrasting observations for halogen (X)-bridged binuclear platinum complexes R_4[Pt_2(P_2O_5H_2)_4X]nH_2O, that is, pressure-induced Peierls and reverse Peierls instabilities, are explained by finite-temperature Hartree-Fock calculations. It is demonstrated that increasing pressure transforms the initial charge-polarization state into a charge-density-wave state at high temperatures, whereas the charge-density-wave state oppositely declines with increasing pressure at low temperatures. We further predict that higher-pressure experiments should reveal successive phase transitions around room temperature.Comment: 5 pages, 4 figures embedded, to be published in Phys. Rev. B 64, September 1 (2001) Rapid Commu

    Semi-Phenomenological Analysis of Dynamics of Nonlinear Excitations in One-Dimensional Electron-Phonon System

    Full text link
    The structure of moving nonlinear excitations in one-dimensional electron-phonon systems is studied semi-phenomenologically by using an effective action in which the width of the nonlinear excitation is treated as a dynamical variable. The effective action can be derived from Su, Schrieffer and Heeger's model or its continuum version proposed by Takayama, Lin-Liu and Maki with an assumption that the nonlinear excitation moves uniformly without any deformation except the change of its width. The form of the action is essentially the same as that discussed by Bishop and coworkers in studying the dynamics of the soliton in polyacetylene, though some details are different. For the moving excitation with a velocity vv, the width is determined by minimizing the effective action. A requirement that there must be a minimum in the action as a function of its width provides a maximum velocity. The velocity dependence of the width and energy can be determined. The motions of a soliton in p olyacetylene and an acoustic polaron in polydiacetylene are studied within this formulation. The obtained results are in good agreement with those of numerical simulations.Comment: 19 pages, LaTeX, 7 Postscript figures, to be published in J. Phys. Soc. Jpn. vol.65 (1996) No.

    Gravitational Instability in Radiation Pressure Dominated Backgrounds

    Get PDF
    I consider the physics of gravitational instabilities in the presence of dynamically important radiation pressure and gray radiative diffusion, governed by a constant opacity, kappa. For any non-zero radiation diffusion rate on an optically-thick scale, the medium is unstable unless the classical gas-only isothermal Jeans criterion is satisfied. When diffusion is "slow," although the dynamical Jeans instability is stabilized by radiation pressure on scales smaller than the adiabatic Jeans length, on these same spatial scales the medium is unstable to a diffusive mode. In this regime, neglecting gas pressure, the characteristic timescale for growth is independent of spatial scale and given by (3 kappa c_s^2)/(4 pi G c), where c_s is the adiabatic sound speed. This timescale is that required for a fluid parcel to radiate away its thermal energy content at the Eddington limit, the Kelvin-Helmholz timescale for a radiation pressure supported self-gravitating object. In the limit of "rapid" diffusion, radiation does nothing to suppress the Jeans instability and the medium is dynamically unstable unless the gas-only Jeans criterion is satisfied. I connect with treatments of Silk damping in the early universe. I discuss several applications, including photons diffusing in regions of extreme star formation (starburst galaxies & pc-scale AGN disks), and the diffusion of cosmic rays in normal galaxies and galaxy clusters. The former (particularly, starbursts) are "rapidly" diffusing and thus cannot be supported against dynamical instability in the linear regime by radiation pressure alone. The latter are more nearly "slowly" diffusing. I speculate that the turbulence in starbursts may be driven by the dynamical coupling between the radiation field and the self-gravitating gas, perhaps mediated by magnetic fields. (Abridged)Comment: 15 pages; accepted to Ap

    Inhibition and Adjective Learning in Bilingual and Monolingual Children

    Get PDF
    The ability to control attention – by inhibiting pre-potent, yet no longer relevant information – is an essential skill in all of human learning, and increasing evidence suggests that this ability is enhanced in language learning environments in which the learner is managing and using more than one language. One question waiting to be addressed is whether such efficient attentional control plays a role in word learning. That is, children who must manage two languages also must manage to learn two languages and the advantages of more efficient attentional control may benefit aspects of language learning within each language. This study compared bilingual and monolingual children’s performances in an artificial word-learning task and in a non-linguistic task that measures attention control. Three-year-old monolingual and bilingual children with similar vocabulary development participated in these tasks. The results replicate earlier work showing advanced attentional control among bilingual children and suggest that this better attentional control may also benefit better performance in novel adjective learning. The findings provide the first direct evidence of a relation between performances in an artificial word-learning task and in an attentional control task. We discuss this finding with respect to the general relevance of attentional control for lexical learning in all children and with respect to current views of bilingual children’s word learning

    Anti-inflammatory sesquiterpenes from Curcuma zedoaria

    Get PDF
    This is a preprint of an article whose final and definitive form has been published in the NATURAL PRODUCT RESEARCH © 2006 copyright Taylor & Francis; NATURAL PRODUCT RESEARCH is available online at: http://www.informaworld.com/openurl?genre=article&issn=1478-6419&volume=20&issue=7&spage=680ArticleNATURAL PRODUCT RESEARCH. 20(7): 680-685 (2006)journal articl

    Magnetic translation groups in an n-dimensional torus

    Get PDF
    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG on an n-dimensional torus is isomorphic to a central extension of a cyclic group Z_{nu_1} x ... x Z_{nu_{2l}} x T^m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG on a three-torus and apply the representation theory to three examples. We shortly describe a representation theory for a general n-torus. The MTG on an n-torus can be regarded as a generalization of the so-called noncommutative torus.Comment: 29 pages, LaTeX2e, title changed, re-organized, to be published in Journal of Mathematical Physic

    Resistive jet simulations extending radially self-similar magnetohydrodynamic models

    Full text link
    Numerical simulations with self-similar initial and boundary conditions provide a link between theoretical and numerical investigations of jet dynamics. We perform axisymmetric resistive magnetohydrodynamic (MHD) simulations for a generalised solution of the Blandford & Payne type, and compare them with the corresponding analytical and numerical ideal-MHD solutions. We disentangle the effects of the numerical and physical diffusivity. The latter could occur in outflows above an accretion disk, being transferred from the underlying disk into the disk corona by MHD turbulence (anomalous turbulent diffusivity), or as a result of ambipolar diffusion in partially ionized flows. We conclude that while the classical magnetic Reynolds number RmR_{\rm m} measures the importance of resistive effects in the induction equation, a new introduced number, \rbeta=(\beta/2)R_{\rm m} with β\beta the plasma beta, measures the importance of the resistive effects in the energy equation. Thus, in magnetised jets with β<2\beta<2, when \rbeta \la 1 resistive effects are non-negligible and affect mostly the energy equation. The presented simulations indeed show that for a range of magnetic diffusivities corresponding to \rbeta \ga 1 the flow remains close to the ideal-MHD self-similar solution.Comment: Accepted for publication in MNRA

    Scaling properties of granular materials

    Full text link
    Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc., are scaled by a constant. The result leads to a method to scale down experiments to lab-size.Comment: 4 pages, 2 figure

    The impact of two-dimensional elastic disk

    Full text link
    The impact of a two-dimensional elastic disk with a wall is numerically studied. It is clarified that the coefficient of restitution (COR) decreases with the impact velocity. The result is not consistent with the recent quasi-static theory of inelastic collisions even for very slow impact. The abrupt drop of COR is found due to the plastic deformation of the disk, which is assisted by the initial internal motion.(to be published in J. Phys. Soc. Jpn.)Comment: 6 Pages,2 figure
    corecore