53 research outputs found

    Distributed Cooperative Relaying Based on Space-Time Block Code: System Description and Measurement Campaign

    Get PDF
    In cooperative relaying, intermediate stations are required to enhance the end-to-end transmission performance. The performance of the cooperative relaying scheme has been investigated theoretically and via computer simulations. However, cooperative relaying using transmit diversity techniques in actual environments has not been investigated thus far. This paper presents an experimental system for distributed cooperative relaying using space-time block code and evaluations of its transmission performances in real propagation channels. To this end, four wireless stations-specifically, one source, two relays, and one destination-were developed using analog transceivers and field-programmable gate arrays for real-time digital signal processing. Sample timing and frequency synchronizations among the four wireless stations were established by using the received signals as a reference. The end-to-end error performance of distributed cooperative relaying was compared to those of noncooperative relaying schemes, and the performances of three relaying schemes were evaluated quasisimultaneously in terms of their cumulative distribution functions of the bit-error ratios (BERs). The experimental results indicated that the BER performance of the two-hop distributed cooperative relaying scheme was substantially superior to those of noncooperative two-hop relaying schemes, including a route diversity scheme

    Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin

    Get PDF
    The mitogen-activated protein kinase (MAPK) pathways are involved in many cellular processes, including the development of fibrosis. Here, we examined the role of Sprouty-related EVH-1-domain-containing protein (Spred) 2, a negative regulator of the MAPK-ERK pathway, in the development of bleomycin (BLM)-induced pulmonary fibrosis (PF). Compared to WT mice, Spred2−/− mice developed milder PF with increased proliferation of bronchial epithelial cells. Spred2−/− lung epithelial cells or MLE-12 cells treated with spred2 siRNA proliferated faster than control cells in vitro. Spred2−/− and WT macrophages produced similar levels of TNFα and MCP-1 in response to BLM or lipopolysaccharide and myeloid cell-specific deletion of Spred2 in mice had no effect. Spred2−/− fibroblasts proliferated faster and produced similar levels of MCP-1 compared to WT fibroblasts. Spred2 mRNA was almost exclusively detected in bronchial epithelial cells of naïve WT mice and it accumulated in approximately 50% of cells with a characteristic of Clara cells, 14 days after BLM treatment. These results suggest that Spred2 is involved in the regulation of tissue repair after BLM-induced lung injury and increased proliferation of lung bronchial cells in Spred2−/− mice may contribute to faster tissue repair. Thus, Spred2 may present a new therapeutic target for the treatment of PF

    Osteocrin ameliorates adriamycin nephropathy via p38 mitogen-activated protein kinase inhibition

    Get PDF
    Natriuretic peptides exert multiple effects by binding to natriuretic peptide receptors (NPRs). Osteocrin (OSTN) binds with high affinity to NPR-C, a clearance receptor for natriuretic peptides, and inhibits degradation of natriuretic peptides and consequently enhances guanylyl cyclase-A (GC-A/NPR1) signaling. However, the roles of OSTN in the kidney have not been well clarified. Adriamycin (ADR) nephropathy in wild-type mice showed albuminuria, glomerular basement membrane changes, increased podocyte injuries, infiltration of macrophages, and p38 mitogen-activated protein kinase (MAPK) activation. All these phenotypes were improved in OSTN- transgenic (Tg) mice and NPR3 knockout (KO) mice, with no further improvement in OSTN-Tg/NPR3 KO double mutant mice, indicating that OSTN works through NPR3. On the contrary, OSTN KO mice increased urinary albumin levels, and pharmacological blockade of p38 MAPK in OSTN KO mice ameliorated ADR nephropathy. In vitro, combination treatment with ANP and OSTN, or FR167653, p38 MAPK inhibitor, reduced Ccl2 and Des mRNA expression in murine podocytes (MPC5). OSTN increased intracellular cyclic guanosine monophosphate (cGMP) in MPC5 through GC-A. We have elucidated that circulating OSTN improves ADR nephropathy by enhancing GC-A signaling and consequently suppressing p38 MAPK activation. These results suggest that OSTN could be a promising therapeutic agent for podocyte injury

    Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells

    Get PDF
    MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment

    Resin Elongation Phenomenon of Polystyrene Nanopillars in Nanoimprint Lithography

    No full text
    We investigated the elongation of polystyrene nanopillars formed by thermal nanoimprint lithography. Silicone and perfluoropolyether were used as mold release agents to obtain molds with different adhesion forces against polystyrene to be imprinted. The adhesion force between the resin and release layers was evaluated as a force curve by atomic force microscope with a polystyrene colloid probe. Elongation depended on the aspect ratio of the corresponding microholes on the mold and the adhesion force against the release layer. The conditions under which the elongation occurred exhibited a clear threshold on the stress loaded on the foot area of the nanopillars. </jats:p
    corecore