164 research outputs found

    Tree diametric-species diversity is affected by human impact in old Scots pine dominated forest in boreal Fennoscandia

    Get PDF
    Background Forest structural and compositional variability is of fundamental importance for forest ecosystem functioning and species diversity. The purpose of this research was to examine how human impact has affected the compositional-structural diversity of mature pine-dominated boreal forest in boreal Fennoscandia. For this a new approach was used, based on the classification of tree sizes by the diameter at breast height (dbh) and tree species, resulting in a new variable, the diametric-species, the variation of which describes the compositional-structural diversity of the forest. This variable was used to compare the structural-compositional diversity among three forest classes with different degree of human influence, using rarefaction as the main tool of analysis, complemented by analyses based on common diversity indices. Results The results showed that the near-natural forest was the most diverse and the managed forest the least diverse. On the other hand, the diversity of near-natural and selectively logged forests were similar, suggesting that selectively logged forests are equal to the natural forest in their compositional-structural diversity. The analysis solely on tree species showed no significant differences among the forest classes of different human impact. The Shannon diversity index showed no significant difference between the forest classes for the diametric-species and tree species classifications only, but the Simpson index signaled a slight difference between the selectively logged and managed forest classes for the diametric-species classification. Furthermore, the Sorensen index detected a difference among forest classes in the diametric-species classification. Conclusions Forest utilization had an adverse impact on forest compositional-structural diversity of mature Scots pine forests. The analysis also shows that the novel approach based on diametric-species classification could be a useful tool for forest diversity analysis and comparison, especially in species-poor forests such as the boreal forest.Peer reviewe

    Natural Disturbance-Based Forest Management: Moving Beyond Retention and Continuous-Cover Forestry

    Get PDF
    Global forest area is declining rapidly, along with degradation of the ecological condition of remaining forests. Hence it is necessary to adopt forest management approaches that can achieve a balance between (1) human management designs based on homogenization of forest structure to efficiently deliver economic values and (2) naturally emerging self-organized ecosystem dynamics that foster heterogeneity, biodiversity, resilience and adaptive capacity. Natural disturbance-based management is suggested to provide such an approach. It is grounded on the premise that disturbance is a key process maintaining diversity of ecosystem structures, species and functions, and adaptive and evolutionary potential, which functionally link to sustainability of ecosystem services supporting human well-being. We review the development, ecological and evolutionary foundations and applications of natural disturbance-based forest management. With emphasis on boreal forests, we compare this approach with two mainstream approaches to sustainable forest management, retention and continuous-cover forestry. Compared with these approaches, natural disturbance-based management provides a more comprehensive framework, which is compatible with current understanding of multiple-scale ecological processes and structures, which underlie biodiversity, resilience and adaptive potential of forest ecosystems. We conclude that natural disturbance-based management provides a comprehensive ecosystem-based framework for managing forests for human needs of commodity production and immaterial values, while maintaining forest health in the rapidly changing global environment.Peer reviewe

    Imprints of management history on hemiboreal forest ecosystems in the Baltic States

    Get PDF
    In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and condition of hemiboreal forests of the Baltic States region and analyzed species composition of recently established and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years). Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr, including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands; about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of the ordination space with high hardwood dominance, while the remaining RF stands were scattered throughout the ordination space occupied by PF with highly variable species composition. Planting of conifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem legacies likely explained the variable compositions of this latter group of RF. We positioned the observations of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey previously carried out by LA mu hmus), which indicated that RF was more likely to occur on areas of higher soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic trends that are difficult to project into the future. Further research in tracing land use changes (using pollen analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel disturbance regime are of particular interest.Peer reviewe

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles

    Get PDF
    The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA) particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI). We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm) and smaller (diameters between 17 and 30 nm) particles

    A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment

    Get PDF
    Natural regeneration in Pinus pinea stands commonly fails throughout the Spanish Northern Plateau under current intensive regeneration treatments. As a result, extensive direct seeding is commonly conducted to guarantee regeneration occurrence. In a period of rationalization of the resources devoted to forest management, this kind of techniques may become unaffordable. Given that the climatic and stand factors driving germination remain unknown, tools are required to understand the process and temper the use of direct seeding. In this study, the spatio-temporal pattern of germination of P. pinea was modelled with those purposes. The resulting findings will allow us to (1) determine the main ecological variables involved in germination in the species and (2) infer adequate silvicultural alternatives. The modelling approach focuses on covariates which are readily available to forest managers. A two-step nonlinear mixed model was fitted to predict germination occurrence and abundance in P. pinea under varying climatic, environmental and stand conditions, based on a germination data set covering a 5-year period. The results obtained reveal that the process is primarily driven by climate variables. Favourable conditions for germination commonly occur in fall although the optimum window is often narrow and may not occur at all in some years. At spatial level, it would appear that germination is facilitated by high stand densities, suggesting that current felling intensity should be reduced. In accordance with other studies on P. pinea dispersal, it seems that denser stands during the regeneration period will reduce the present dependence on direct seeding

    Habitat effects on the breeding performance of three forest-dwelling hawks

    Get PDF
    PLoS ONE 10(9): e0137877Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100–4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992–2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.Peer reviewe
    • 

    corecore