5 research outputs found
Bipolar localization of putative photoreceptor protein for phototaxis in thermophilic cyanobacterium Synechococcus elongatus
Funding Information: This work was supported in part by Grants-in-Aid for scientific research from the Ministry of Education, Science, Sports and Culture, Japan (no. 11640653 to K.M.).We identified an open reading frame from a database of the entire genome of Synechococcus elongatus, the product of which was very similar to pixJ1, which was proposed as photoreceptor gene for phototaxis in Synechocystis sp. PCC6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The mRNA of S. elongatus pixJ (SepixJ) was expressed in vivo as a part of the product of an operon. SePixJ was detected exclusively in the membrane fraction after cell fractionation. Immunogold labeling of SePixJ in ultra-thin sections indicated that it existed only in both ends of the rod-shaped cell; probably bound with the cytoplasmic membrane.publishersversionPeer reviewe
The Circadian Clock-Related Gene pex Regulates a Negative cis Element in the kaiA Promoter Region
In the cyanobacterium Synechococcus sp. strain PCC 7942, a circadian clock-related gene, pex, was identified as the gene prolonging the period of the clock. A PadR domain, which is a newly classified transcription factor domain, and the X-ray crystal structure of the Pex protein suggest a role for Pex in transcriptional regulation in the circadian system. However, the regulatory target of the Pex protein is unknown. To determine the role of Pex, we monitored bioluminescence rhythms that reported the expression activity of the kaiA gene or the kaiBC operon in pex deficiency, pex constitutive expression, and the wild-type genotype. The expression of kaiA in the pex-deficient or constitutive expression genotype was 7 or 1/7 times that of the wild type, respectively, suggesting that kaiA is the target of negative regulation by Pex. In contrast, the expression of the kaiBC gene in the two pex-related genotypes was the same as that in the wild type, suggesting that Pex specifically regulates kaiA expression. We used primer extension analysis to map the transcription start site for the kaiA gene 66 bp upstream of the translation start codon. Mapping with deletion and base pair substitution of the kaiA upstream region revealed that a 5-bp sequence in this region was essential for the regulation of kaiA. The repression or constitutive expression of the kaiA transgene caused the prolongation or shortening of the circadian period, respectively, suggesting that the Pex protein changes the period via the negative regulation of kaiA