4 research outputs found

    GKP Signal Processing Using Deep CNN and SVM for Tongue-Machine Interface

    Get PDF
    The tongue is one of the few organs with high mobility in the case of severe spinal cord injuries. However, most tongue-machine interfaces (TMIs) require the patient to wear obtrusive and unhygienic devices in and around the mouth. This paper aims to develop a TMI based on the glossokinetic potentials (GKPs), i.e. the electrical signals generated by the tongue when it touches the buccal walls. Ten patients were recruited for this research. The GKP patterns were classified by convolutional neural network (CNN) and support vector machine (SVM). It was observed that the CNN outperformed the SVM in individual and average scores for both raw and preprocessed datasets, reaching an accuracy of 97 similar to 99%. The CNN-based GKP processing method makes it easy to build a natural, appealing and robust TMI for the paralyzed. Being the first attempt to process GKPs with the CNN, our research offers an alternative to the traditional brain-computer interfaces (BCIs), which suffers from the instability and low signal-to-noise ratio (SNR) of electroencephalography (EEG)

    Glossokinetic potential based tongue-machine interface for 1-D extraction using neural networks

    No full text
    This study may serve disabled people to control assistive devices in natural, unobtrusive, speedy and reliable manner. Moreover, it is expected that GKP-based TMI could be a collaboration channel for traditional electroencephalography (EEG)-based brain computer interfaces which have significant inadequacies arisen from the EEG signals. (C) 2018 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved

    Glossokinetic potential based tongue-machine interface for 1-D extraction

    No full text
    The tongue is an aesthetically useful organ located in the oral cavity. It can move in complex ways with very little fatigue. Many studies on assistive technologies operated by tongue are called tongue-human computer interface or tongue-machine interface (TMI) for paralyzed individuals. However, many of them are obtrusive systems consisting of hardware such as sensors and magnetic tracer placed in the mouth and on the tongue. Hence these approaches could be annoying, aesthetically unappealing and unhygienic. In this study, we aimed to develop a natural and reliable tongue-machine interface using solely glossokinetic potentials via investigation of the success of machine learning algorithms for 1-D tongue-based control or communication on assistive technologies. Glossokinetic potential responses are generated by touching the buccal walls with the tip of the tongue. In this study, eight male and two female naive healthy subjects, aged 22-34 years, participated. Linear discriminant analysis, support vector machine, and the k-nearest neighbor were used as machine learning algorithms. Then the greatest success rate was achieved an accuracy of 99% for the best participant in support vector machine. This study may serve disabled people to control assistive devices in natural, unobtrusive, speedy and reliable manner. Moreover, it is expected that GKP-based TMI could be alternative control and communication channel for traditional electroencephalography (EEG)-based brain-computer interfaces which have significant inadequacies arisen from the EEG signals
    corecore