4 research outputs found

    Mutual use of trail-following chemical cues by a termite host and its inquiline

    Get PDF
    Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies

    Evolution of the frontal gland in termite imagoes

    No full text
    info:eu-repo/semantics/publishe

    Armed reproductives : evolution of the frontal gland in imagoes of Termitidae

    No full text
    The frontal gland of termites is a structure without any equivalent among other animals. Although this gland is well known in soldiers, it received almost no attention in other castes. Recently, we described it in imagoes of Rhinotermitidae and Serritermitidae. In order to provide a complete picture of the evolution of this gland in termite imagoes, we studied it in additional 34 species of Termitidae, representing 7 of the 8 subfamilies. The frontal gland of these species is formed by class 1 secretory cells only, and occurs in two basic shapes: epithelial with reservoir in Foraminitermitinae and Macrotermitinae, and epithelial without reservoir in all other subfamilies. The size variability of the gland is high, not only among Termitidae subfamilies, but also within subfamilies. Our data suggest that the ancestral form of the frontal gland is epithelial with reservoir, as found in Rhinotermitidae, Serritermitidae, and basal Termitidae. The reduction of the reservoir occurred at least two times and the gland was lost two times independently: in Protermes sp. and in Microtermes toumodiensis (both Macrotermitinae). © 2013 Elsevier Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mutual use of trail-following chemical cues by a termite host and its inquiline

    No full text
    Termite nests are often secondarily inhabited by other termite species ( = inquilines) that cohabit with the host. To understand this association, we studied the trail-following behaviour in two Neotropical species, Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) and its obligatory inquiline, Inquilinitermes microcerus (Termitidae: Termitinae). Using behavioural experiments and chemical analyses, we determined that the trail-following pheromone of C. cyphergaster is made of neocembrene and (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. Although no specific compound was identified in I. microcerus, workers were able to follow the above compounds in behavioural bioassays. Interestingly, in choice tests, C. cyphergaster prefers conspecific over heterospecific trails while I. microcerus shows the converse behaviour. In no-choice tests with whole body extracts, C. cyphergaster showed no preference for, while I. microcerus clearly avoided heterospecific trails. This seems to agree with the hypothesis that trail-following pheromones may shape the cohabitation of C. cyphergaster and I. microcerus and reinforce the idea that their cohabitation is based on conflict-avoiding strategies
    corecore