28 research outputs found
Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases
MicroRNAs are small non-coding RNAs that range in length from 18 to 24 nucleotides. As one of the most extensively studied microRNAs, microRNA-21 (miR-21) is highly expressed in many mammalian cell types. It regulates multiple biological functions such as proliferation, differentiation, migration, and apoptosis. In this review, we summarized the mechanism of miR-21 in the pathogenesis of various liver diseases. While it is clear that miR-21 plays an important role in different types of liver diseases, its use as a diagnostic marker for specific liver disease or its therapeutic implication are not ready for prime time due to significant variability and heterogeneity in the expression of miR-21 in different types of liver diseases depending on the studies. Additional studies to further define miR-21 functions and its mechanism in association with each type of chronic liver diseases are needed before we can translate the bedside observations into clinical settings
Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease
Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury
Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells
Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1
Long non-coding RNAs in liver diseases: Focusing on nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease
Long non-coding RNAs (lncRNAs), a class of transcribed RNA molecules with the lengths exceeding 200 nucleotides, are not translated into protein. They can modulate protein-coding genes by controlling transcriptional and posttranscriptional processes. The dysregulation of lncRNAs has been related to various pathological disorders. In this review, we summarized the current knowledge of lncRNAs and their implications in the pathogenesis of three common liver diseases: nonalcoholic fatty liver disease, alcohol-related liver disease, and cholestatic liver disease. Future studies to further define the role of lncRNAs and their mechanisms in various types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting specific lncRNAs for the treatment of liver diseases
Serum Metabolomic Profiling Identifies Key Metabolic Signatures Associated With Pathogenesis of Alcoholic Liver Disease in Humans
Alcoholic liver disease (ALD) develops in a subset of heavy drinkers (HDs). The goals of our study were to (1) characterize the global serum metabolomic changes in well-characterized cohorts of controls (Cs), HDs, and those with alcoholic cirrhosis (AC); (2) identify metabolomic signatures as potential diagnostic markers, and (3) determine the trajectory of serum metabolites in response to alcohol abstinence. Serum metabolic profiling was performed in 22 Cs, 147 HDs, and 33 patients with AC using ultraperformance liquid chromatography-tandem mass spectrometry. Hepatic gene expression was conducted in Cs (n = 16) and those with AC (n = 32). We found progressive changes in the quantities of metabolites from heavy drinking to AC. Taurine-conjugated bile acids (taurocholic acid [TCA], 127-fold; taurochenodeoxycholic acid [TCDCA], 131-fold; and tauroursodeoxycholic acid, 56-fold) showed more striking elevations than glycine-conjugated forms (glycocholic acid [GCA], 22-fold; glycochenodeoxycholic acid [GCDCA], 22-fold; and glycoursodeoxycholic acid [GUDCA], 11-fold). This was associated with increased liver cytochrome P450, family 7, subfamily B, member 1 and taurine content (more substrates); the latter was due to dysregulation of homocysteine metabolism. Increased levels of GCDCA, TCDCA, GCA, and TCA positively correlated with disease progression from Child-Pugh A to C and Model for End-Stage Liver Disease scores, whereas GCDCA, GCA, and GUDCA were better predictors of alcohol abstinence. The levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor (FGF) 21 but not FGF19 were increased in HDs, and all three were further increased in those with AC. Conclusion: Serum taurine/glycine-conjugated bile acids could serve as noninvasive markers to predict the severity of AC, whereas GLP-1 and FGF21 may indicate a progression from heavy drinking to AC
Association between Aldehyde Dehydrogenase 2 Glu504Lys Polymorphism and Alcoholic Liver Disease
Background
Only a subset of patients with excessive alcohol use develop alcoholic liver disease (ALD); though the exact mechanism is not completely understood. Once ingested, alcohol is metabolized by 2 key oxidative enzymes, alcohol (ADH) and aldehyde dehydrogenase (ALDH). There are 2 major ALDH isoforms, cytosolic and mitochondrial, encoded by the aldehyde ALDH1 and ALDH2 genes, respectively. The ALDH2 gene was hypothesized to alter genetic susceptibility to alcohol dependence and alcohol-induced liver diseases. The aim of this study is to determine the association between aldehyde dehydrogenase 2 (rs671) glu504lys polymorphism and ALD.
Methods
ALDH2 genotype was performed in 535 healthy controls and 281 patients with ALD.
Results
The prevalence of the common form of the SNP rs671, 504glu (glu/glu) was significantly higher in patients with ALD (95.4%) compared to that of controls (73.7%, p<0.0001). Among controls, 23.7% had heterozygous (glu/lys) genotype when compared to 4.6% in those with ALD (OR 0.16, 95%CI 0.09–0.28). The allele frequency for 504lys allele in patients with ALD was 2.3%; compared to 14.5% in healthy controls (OR 0.13, 95%CI 0.07–0.24).
Conclusions
Patients with ALDH2 504lys variant were less associated with ALD compared to those with ALDH2 504glu using both genotypic and allelic analyses
The role of SHP/REV-ERBα/CYP4A axis in the pathogenesis of alcohol-associated liver disease
Alcohol-associated liver disease (ALD) represents a spectrum of histopathological changes, including alcoholic steatosis, steatohepatitis, and cirrhosis. One of the early responses to excessive alcohol consumption is lipid accumulation in the hepatocytes. Lipid ω-hydroxylation of medium- and long-chain fatty acid metabolized by the cytochrome P450 4A (CYP4A) family is an alternative pathway for fatty acid metabolism. The molecular mechanisms of CYP4A in ALD pathogenesis have not been elucidated. In this study, WT and Shp-/- mice were fed with a modified ethanol-binge, National Institute on Alcohol Abuse and Alcoholism model (10 days of ethanol feeding plus single binge). Liver tissues were collected every 6 hours for 24 hours and analyzed using RNA-Seq. The effects of REV-ERBα agonist (SR9009, 100 mg/kg/d) or CYP4A antagonist (HET0016, 5 mg/kg/d) in ethanol-fed mice were also evaluated. We found that hepatic Cyp4a10 and Cyp4a14 expression were significantly upregulated in WT mice, but not in Shp-/- mice, fed with ethanol. ChIP quantitative PCR and promoter assay revealed that REV-ERBα is the transcriptional repressor of Cyp4a10 and Cyp4a14. Rev-Erbα-/- hepatocytes had a marked induction of both Cyp4a genes and lipid accumulation. REV-ERBα agonist SR9009 or CYP4A antagonist HET0016 attenuated Cyp4a induction by ethanol and prevented alcohol-induced steatosis. Here, we have identified a role for the SHP/REV-ERBα/CYP4A axis in the pathogenesis of ALD. Our data also suggest REV-ERBα or CYP4A as the potential therapeutic targets for ALD
Transcriptomic analysis reveals the miRNAs responsible for liver regeneration associated with mortality in alcoholic hepatitis
We conducted a comprehensive serum transcriptomic analysis to explore the roles of miRNAs in alcoholic hepatitis (AH) pathogenesis and their prognostic significance. Serum miRNA profiling was performed in 15 controls, 20 heavy drinkers without liver disease, and 65 patients with AH and compared to publicly available hepatic miRNA profiling in AH patients. Among the top 26 miRNAs, the expression of miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p were significantly reduced in both serum and liver of AH patients. Pathway analysis of the potential targets of these miRNAs uncovered the genes related to DNA synthesis and cell cycle progression pathways, including RRM2, CCND1, CCND2, MYC, and PMAIP1. We found a significant increase in the protein expression of RRM2, CCND1, and CCND2, but not MYC and PMAIP1 in AH patients who underwent liver transplantation; miR-26b-5p and miR-30b-5p inhibited the 3’-UTR luciferase activity of RRM2 and CCND2, and miR-20a-5p reduced the 3’-UTR luciferase activity of CCND1 and CCND2. During a median follow-up of 346 days, 21% of AH patients died; these patients had higher BMI, MELD, serum miR-30b-5p, miR-20a-5p, miR-146a-5p, and miR-26b-5p than those who survived. Cox regression analysis showed BMI, MELD score, miR-20a-5p, miR-146a-5p, and miR-26b-5p predicted the mortality. Conclusion: Patients with AH attempt to deal with hepatocyte injury by down-regulating specific miRNAs and upregulating genes responsible for DNA synthesis and cell cycle progression. Higher expression of these miRNAs, suggestive of a diminished capacity in liver regeneration, predicts short-term mortality in AH patients
Long non-coding RNA H19 – a new player in the pathogenesis of liver diseases
The liver is a vital organ that controls glucose and lipid metabolism, hormone regulation, and bile secretion. Liver injury can occur from various insults such as viruses, metabolic diseases, and alcohol, which lead to acute and chronic liver diseases. Recent studies have demonstrated the implications of long noncoding RNAs (lncRNAs) in the pathogenesis of liver diseases. These newly discovered lncRNAs have various functions attributing to many cellular biological processes via distinct and diverse mechanisms. LncRNA H19, one of the first lncRNAs being identified, is highly expressed in fetal liver but not in adult normal liver. Its expression, however, is increased in liver diseases with various etiologies. In this review, we focused on the roles of H19 in the pathogenesis of liver diseases. This comprehensive review is aimed to provide useful perspectives and translational applications of H19 as a potential therapeutic target of liver diseases
Role of microRNA-7 in liver diseases: a comprehensive review of the mechanisms and therapeutic applications
MicroRNA-7 (miR-7) is a small non-coding RNA, which plays critical roles in regulating gene expression of multiple key cellular processes. MiR-7 exhibits a tissue-specific pattern of expression, with abundant levels found in the brain, spleen, and pancreas. Although it is expressed at lower levels in other tissues, including the liver, miR-7 is involved in both the development of organs and biological functions of cells. In this review, we focus on the mechanisms by which miR-7 controls cell growth, proliferation, invasion, metastasis, metabolism, and inflammation. We also summarize the specific roles of miR-7 in liver diseases. MiR-7 is considered as a tumor suppressor miRNA in hepatocellular carcinoma and is involved in the pathogenesis of hepatic steatosis and hepatitis. Future studies to further define miR-7 functions and its mechanism in association with other types of liver diseases should be explored. An improved understanding from these studies will provide us a useful perspective leading to mechanism-based intervention by targeting miR-7 for the treatment of liver diseases