102 research outputs found

    SO(6)-Generalized Pseudogap Model of the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping reflects an underlying SO(6) instability structure of the (pi,0) saddle points. The pseudogap is probably not associated with superconductivity, but is related to competing nesting instabilities, which are responsible for the stripe phases. We earlier introduced a simple Ansatz of this competition in terms of a pinned Balseiro-Falicov (pBF) model of competing charge density wave and (s-wave) superconductivity. This model gives a good description of the phase diagram and the tunneling and photoemission spectra. Here, we briefly review these results, and discuss some recent developments: experimental evidence for a non-superconducting component to the pseudogap; and SO(6) generalizations of the pBF model, including flux phase and d-wave superconductivity.Comment: 6 pages LaTex, 4 ps figures (U. of Miami Conference HTS99

    Quantum communication networks with optical vortices

    Full text link
    Quantum communications bring a paradigm change in internet security by using quantum resources to establish secure keys between parties. Present-day quantum communications networks are mainly point-to-point and use trusted nodes and key management systems to relay the keys. Future quantum networks, including the quantum internet, will have complex topologies in which groups of users are connected and communicate with each-other. Here we investigate several architectures for quantum communication networks. We show that photonic orbital angular momentum (OAM) can be used to route quantum information between different nodes. Starting from a simple, point-to-point network, we will gradually develop more complex architectures: point-to-multipoint, fully-connected and entanglement-distribution networks. As a particularly important result, we show that an nn-node, fully-connected network can be constructed with a single OAM sorter and n−1n-1 OAM values. Our results pave the way to construct complex quantum communication networks with minimal resources.Comment: 10 pages, 9 figure

    Remnant Fermi Surfaces in Photoemission

    Full text link
    Recent experiments have introduced a new concept for analyzing the photoemission spectra of correlated electrons -- the remnant Fermi surface (rFs), which can be measured even in systems which lack a conventional Fermi surface. Here, we analyze the rFs in a number of interacting electron models, and find that the results fall into two classes. For systems with pairing instabilities, the rFs is an accurate replica of the true Fermi surface. In the presence of nesting instabilities, the rFs is a map of the resulting superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2 is of nesting origin.Comment: 4 pages LaTex, 3 ps figure

    Influence of spin structures and nesting on Fermi surface and a pseudogap anisotropy in t-t'-U Hubbard model

    Full text link
    Influence of two type of spin structures on the form of the Fermi surface (FS) and a photoemission intensity map is studied for t-t'-U Hubbard model. Mean field calculations are done for the stripe phase and for the spiral spin structure. It is shown, that unlike a case of electron doping, the hole-doped models are unstable with respect to formation of such structures. The pseudogap anisotropies are different for h- and e- doping. In accordance with ARPES data for La2SrxCuO4 the stripe phase is characterized by quasi-one-dimensional segments of FS at k=(\pi,0) and by suppression of spectral weight in diagonal direction. It is shown that spiral structures display the polarisation anisotropy: different segments of FS correspond to electros with different spin polarisations.Comment: 12 pages, 4 figure

    Characteristic features of the temperature dependence of the surface impedance in polycrystalline MgB2_2 samples

    Full text link
    The real Rs(T)R_s(T) and imaginary Xs(T)X_s(T) parts of the surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) in polycrystalline MgB2_2 samples of different density with the critical temperature Tc≈38T_c\approx 38 K are measured at the frequency of 9.4 GHz and in the temperature range 5≤T<2005\le T<200 K. The normal skin-effect condition Rs(T)=Xs(T)R_s(T)=X_s(T) at T≥TcT\ge T_c holds only for the samples of the highest density with roughness sizes not more than 0.1 μ\mum. For such samples extrapolation T→0T\to 0 of the linear at T<Tc/2T<T_c/2 temperature dependences λL(T)=Xs(T)/ωμ0\lambda_L(T)=X_s(T)/\omega\mu_0 and Rs(T)R_s(T) results in values of the London penetration depth λL(0)≈600\lambda_L(0)\approx 600 \AA and residual surface resistance Rres≈0.8R_{res}\approx 0.8 mΩ\Omega. In the entire temperature range the dependences Rs(T)R_s(T) and Xs(T)X_s(T) are well described by the modified two-fluid model.Comment: 7 pages, 3 figures. Europhysics Letters, accepted for publicatio

    Phase Separation Models for Cuprate Stripe Arrays

    Full text link
    An electronic phase separation model provides a natural explanation for a large variety of experimental results in the cuprates, including evidence for both stripes and larger domains, and a termination of the phase separation in the slightly overdoped regime, when the average hole density equals that on the charged stripes. Several models are presented for charged stripes, showing how density waves, superconductivity, and strong correlations compete with quantum size effects (QSEs) in narrow stripes. The energy bands associated with the charged stripes develop in the middle of the Mott gap, and the splitting of these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte
    • …
    corecore