107 research outputs found

    Heavy Quark Production in the ACOT Scheme Beyond NLO

    Full text link
    We analyze the properties of the ACOT scheme for heavy quark production and make use of the MS-Bar massless results at NNLO and N3LO for the structure functions F2 and FL in neutral current deep-inelastic scattering to estimate the higher order corrections. The dominant heavy quark mass effects at higher orders can be taken into account using the massless Wilson coefficients together with an appropriate slow-rescaling prescription implementing the phase space constraints. Combining the exact ACOT scheme at NLO with these expressions should provide a good approximation to the full calculation in the ACOT scheme at NNLO and N3LO.Comment: 4 pages, 2 figures. Presented at DIS12, March 2012, Bonn, German

    Update on nCTEQ PDFs: nuclear PDF uncertainties and LHC applications

    Full text link
    We present updated nCTEQ nuclear parton distribution functions with errors including pion production data from RHIC. We compare them with the results of other groups and present selected LHC applications.Comment: Presented at DIS2014, 28 April - 2 May 2014, Warsaw, Poland. PoS(DIS2014)04

    CTEQ nuclear parton distribution functions

    Full text link
    We show for the first time preliminary results of nuclear parton distribution function analysis of charged lepton DIS and Drell-Yan data within the CTEQ framework including error PDFs. We compare our error estimates to estimates of different nPDF groups.Comment: 5 pages, to appear in the proceedings of XXI International Workshop on Deep-Inelastic Scattering and Related Subjects, Marseilles, Franc

    A Hybrid Scheme for Heavy Flavors: Merging the FFNS and VFNS

    Full text link
    We introduce a Hybrid Variable Flavor Number Scheme for heavy flavors, denoted H-VFNS, which incorporates the advantages of both the traditional Variable Flavor Number Scheme (VFNS) as well as the Fixed Flavor Number Scheme (FFNS). By including an explicit NFN_F-dependence in both the Parton Distribution Functions (PDFs) and the strong coupling constant αS\alpha_S, we generate coexisting sets of PDFs and αS\alpha_S for NF={3,4,5,6}N_F=\{3,4,5,6\} at any scale μ\mu, that are related analytically by the MS\overline{\text{MS}} matching conditions. The H-VFNS resums the heavy quark contributions and provides the freedom to choose the optimal NFN_F for each particular data set. Thus, we can fit selected HERA data in a FFNS framework, while retaining the benefits of the VFNS to analyze LHC data at high scales. We illustrate how such a fit can be implemented for the case of both HERA and LHC data.Comment: 15 pages, 11 figures, updated to match journa

    nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework

    Full text link
    We present the new nCTEQ15 set of nuclear parton distribution functions with uncertainties. This fit extends the CTEQ proton PDFs to include the nuclear dependence using data on nuclei all the way up to 208^Pb. The uncertainties are determined using the Hessian method with an optimal rescaling of the eigenvectors to accurately represent the uncertainties for the chosen tolerance criteria. In addition to the Deep Inelastic Scattering (DIS) and Drell-Yan (DY) processes, we also include inclusive pion production data from RHIC to help constrain the nuclear gluon PDF. Furthermore, we investigate the correlation of the data sets with specific nPDF flavor components, and asses the impact of individual experiments. We also provide comparisons of the nCTEQ15 set with recent fits from other groups.Comment: 35 page

    A Review of the Intrinsic Heavy Quark Content of the Nucleon

    Get PDF
    We present a review of the state of the art of our understanding of the intrinsic charm and bottom content of the nucleon. We discuss theoretical calculations, constraints from global analyses, and collider observables sensitive to the intrinsic heavy quark distributions. A particular emphasis is put on the potential of a high energy and high luminosity fixed target experiment using the LHC beams (AFTER@LHC) to search for intrinsic charm

    Strange Quark PDFs and Implications for Drell-Yan Boson Production at the LHC

    Full text link
    Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark PDF has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s-quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.Comment: 14 pages, 11 figures, added reference

    Impact of heavy quark and quarkonium data on nuclear gluon PDFs

    Full text link
    A clear understanding of nuclear parton distribution functions (nPDFs) plays a crucial role in the interpretation of collider data taken at the Relativistic Heavy Ion Collider (RHIC), the Large Hadron Collider (LHC) and in the near future at the Electron-Ion Collider (EIC). Even with the recent inclusions of vector boson and light meson production data, the uncertainty of the gluon PDF remains substantial and limits the interpretation of heavy ion collision data. To obtain new constraints on the nuclear gluon PDF, we extend our recent nCTEQ15WZ+SIH analysis to inclusive quarkonium and open heavy-flavor meson production data from the LHC. This vast new data set covers a wide kinematic range and puts strong constraints on the nuclear gluon PDF down to x105x\lesssim 10^{-5}. The theoretical predictions for these data sets are obtained from a data-driven approach, where proton-proton data are used to determine effective scattering matrix elements. This approach is validated with detailed comparisons to existing next-to-leading order (NLO) calculations in non-relativistic QCD (NRQCD) for quarkonia and in the general-mass variable-flavor-number scheme (GMVFNS) for the open heavy-flavored mesons. In addition, the uncertainties from the data-driven approach are determined using the Hessian method and accounted for in the PDF fits. This extension of our previous analyses represents an important step toward the next generation of PDFs not only by including new data sets, but also by exploring new methods for future analyses
    corecore