1,353 research outputs found

    Low temperature study of field induced antiferro-ferromagnetic transition in Pd doped FeRh

    Full text link
    The first order antiferromagnetic (AFM) to ferromagnetic (FM) transition in the functional material Fe49(Rh0.93Pd0.07)51 has been studied at low temperatures and high magnetic fields. We have addressed the non-monotonic variation of lower critical field required for FM to AFM transition. It is shown that critically slow dynamics of the transition dominates below 50 K. At low temperature and high magnetic field, state of the system depends on the measurement history resulting in tunable coexistence of AFM and FM phases. By following cooling and heating in unequal magnetic field (CHUF) protocol it is shown that equilibrium state at 6 Tesla magnetic field is AFM state. Glass like FM state at 6 T (obtained after cooling in 8 T) shows reentrant transition with increasing temperature; viz. devitrification to AFM state followed by melting to FM state.Comment: 8 pages, 7 figure

    Real Space Visualization of Thermomagnetic Irreversibility within Supercooling and Superheating Spinodals in Mn1.85Co0.15SbMn_{1.85}Co_{0.15}Sb using Scanning Hall Probe Microscopy

    Full text link
    Phase coexistence across disorder-broadened and magnetic-field-induced first order antiferromagnetic to ferrimagnetic transition in polycrystalline Mn1.85Co0.15SbMn_{1.85}Co_{0.15}Sb has been studied mesoscopically by Scanning Hall Probe Microscope at 120K and up to 5 Tesla magnetic fields. We have observed hysteresis with varying magnetic field and the evolution of coexisting antiferromagnetic and ferrimagnetic state on mesoscopic length scale. These studies show that the magnetic state of the system at low field depends on the path followed to reach 120 K. The low field magnetic states are mesoscopically different for virgin and second field increasing cycle when 120 K is reached by warming from 5K, but are the same within measurement accuracy when the measuring temperature of 120K is reached from 300K by cooling

    CONSUMER ACCEPTANCE OF GMO COWPEAS IN SUB-SAHARA AFRICA

    Get PDF
    Cowpea is the most important indigenous African grain legume for both home use and as a cash crop. Because of its tolerance to drought it is especially important for the Sahel. Genetic transformation of cowpea with Bachilius Thurengius (Bt) genes to control pod boring insects has many advantages, but little is known of the potential consumer response. This paper analyzes and reports the results of a survey of 200 consumers in northern Nigeria in early 2003 concerning consumer awareness of and acceptance of biotechnology. Ninety percent of the respondents were aware of GM products. Those respondents who were most concerned about the ethics of genetic transformation were likely to disapprove of such products, while those individuals who identified international radio as an information source were more likely to approve of GM technology.Institutional and Behavioral Economics,

    Modeling of Soil Profile Produced by a Single Sweep Tool

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 8 (2006): Modeling of Soil Profile Produced by a Single Sweep Tool. Manuscript PM 06 008. Vol. VIII. May, 2006

    Measurement of the topological surface state optical conductance in bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S single crystals

    Full text link
    Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existence of topological surface states definitively. In this work, we studied the charge dynamics of the newly formulated bulk-insulating Sn-doped Bi1.1_{1.1}Sb0.9_{0.9}Te2_2S crystal by using time-domain terahertz spectroscopy. This compound shows much better insulating behavior than any other bulk-insulating topological insulators reported previously. The transmission can be enhanced an amount which is 5%\% of the zero-field transmission by applying magnetic field to 7 T, an effect which we believe is due to the suppression of topological surface states. This suppression is essentially independent of the thicknesses of the samples, showing the two-dimensional nature of the transport. The suppression of surface states in field allows us to use the crystal slab itself as a reference sample to extract the surface conductance, mobility, charge density and scattering rate. Our measurements set the stage for the investigation of phenomena out of the semi-classical regime, such as the topological magneto-electric effect.Comment: 5 pages, 3 figures, submitted in Augus

    Resonance-state-induced superconductivity at high Indium contents in In-doped SnTe

    Full text link
    We report a reinvestigation of superconducting Sn1x_{1-x}Inx_{x}Te at both low and high In doping levels. Analysis of the superconductivity reveals a fundamental change as a function of \textit{x}: the system evolves from a weakly coupled to a strongly coupled superconductor with increasing indium content. Hall Effect measurements further show that the carrier density does not vary linearly with Indium content; indeed at high Indium content, the samples are overall \textit{n}-type, which is contrary to expectations of the standard picture of In1+^{1+} replacing Sn2+^{2+} in this material. Density functional theory calculations probing the electronic state of In in SnTe show that it does not act as a trivial hole dopant, but instead forms a distinct, partly filled In 5\textit{s} - Te 5\textit{p} hybridized state centered around EF_F, very different from what is seen for other nominal hole dopants such as Na, Ag, and vacant Sn sites. We conclude that superconducting In-doped SnTe therefore cannot be considered as a simple hole doped semiconductor.Comment: 12 pages and 7 figure

    Anomalous conductivity tensor in the Dirac semimetal Na_3Bi

    Full text link
    Na3Bi is a Dirac semimetal with protected nodes that may be sensitive to the breaking of time-reversal invariance in a magnetic field B. We report experiments which reveal that both the conductivity and resistivity tensors exhibit robust anomalies in B. The resistivity ρxx\rho_{xx} is B-linear up to 35 T, while the Hall angle exhibits an unusual profile approaching a step-function. The conductivities σxx\sigma_{xx} and σxy\sigma_{xy} share identical power-law dependences at large B. We propose that these significant deviations from conventional transport result from an unusual sensitivity of the transport lifetime to B. Comparison with Cd3As2 is made.Comment: 8 pages, 5 figure
    corecore